Jagged Array

Jagged Array: Irregular 2D array

* Rows of the array has variable sizes

A = [[a,b],[c],[d,e,f].[g],[h,i,jKI]

A[0][O]

L

a | b A[2][1]

c / Array of array is inefficient |
dje|f std::vector< std::vector<int> > arrayOfArray;
. / Al4][2]

h i j | k

Jagged Array: Irregular 2D array

* A jagged array can be expressed by two 1D arrays

A =[[5,7],11],19,3,4],13],15,5,4,3]]

Ali]lj] = C[BIi]+j]

’C—abc

| [ﬁ

N

> o o o |
M
—r

e
~
II

Loop Over Jagged Array

F ﬁ

for(int i=0;i<5:++1){
for(int j=B[il;j<Bli+1];++j)A{

a
|
= 0

float v = C[j];
¥

}

Collision Detection

Applications

Computer Graphics Robotics

(Wikipedia) (Wikipedia) (Credit: freeformer @ Wikipedia)

Popular Rigid Body Simulation Engine

Bullet Open Dynamic Engine

(Credit: SteveBaker at Wikipedia) (Credit: Kborer at Wikipedia)

Real-time Collision Detection using GPU

Vivace: a Practical Gauss-Seidel Method for

Stable Soft Body Dynamics
Marco Fratarcangeli Valentina Tibaldo Fabio Pellacini
Chalmers University of Technology Sapienza University of Rome
A7

P

Vivace: a Practical Gauss-Seidel Method for Stable Soft Body Dynamics
Marco Fratarcangeli, Valentina Tibaldo, Fabio Pellacini

ACM Transactions on Graphics (SIGGRAPH Asia), 2016
http://www.cse.chalmers.se/~marcof

Brute-force Collision Detection Never Works

* If there are N objects, there are N(N-1)/2 number of pair
‘ O(N?) complexity is too slow!

O(N) O(N?)

BN G

Collision Detection in Two Stages

Broad Phase: extract candidate Narrow Phase: actual check

—

L
<IN
10

There may be collision

This won’t collide

Idea of Finding Collision (like a Garimpeiro)

Broad Phase Narrow Phase

11

Types of Bounding Volume (BV)

* Easy evaluation (convex shape!) memory m [tightness]
* Tightly fit to object’s shape g

* Low memory footprint

AABB OOBB
Axis-Aligned Bounding Box Object-Oriented Bounding Box discrete orientation polytope

1D Collision Detection

* What is the condition two line segments intersect?

Colliding

<

—

Qmax

<
|

Pmin

Amin
Pmax

(Pmax > Qmin) and (Gmax > Pmin)

1

Not-Colliding
—
Pmin Pmax Ymin Amax
— R .
Amin Y9max Pmin Pmax

(pmax < Qmin) or (Qmax < Pmin)

Logical inverse

4

What is “Convex” Shape

* Interpolation of two points is always included

Convex Non-Convex

14

Separation Axis Theorem (SAT)

* If two convex shapes do not collide, there exists an axis where
their projections will not overlap

15

Separation Axis Theorem for 2D Polygons

* One of the edges will be perpendicular to the separation axis

Collision Detection for 2D Polygons

* Check all the axes perpendicular to polygon’s edges

Collision of AABB and k-DOP

* Project the Bounding Volume (BV) on axes

* Two BVs collide if all projections overlap

DOP

3-

Data Structure of AABB & k-DOP

* Minimum and maximum along the axis

template <int naxis> Non-type template parameter

class CKdops . .
| (compile time argument)

public:
double minmax[naxis][2];

Y

constexpr double axes[31[2] = {
{0,1},
{1,0},
{1,1} };

std::vector< CKdops<3> > aKdops;

Broad-phase Collision
Detection

How We can Find Collisions of Circles?

O“*

dist(py, p2)

dist(py,p,) < 1 + 1, =Collision

Approaches

+ Brute forceapproach

* Sweep & Prune method

 Spatial Hashing (e.g., Regular grid)

e Spatial Partitioning (e.g., KD-tree)

* Bounding Volume Hierarchy (BVH) We four are awesome!

Sweep & Prune (Sort & Sweep) Method

* Simple but effective culling method
{AO'Ali BO' Bl! COI CliDOJDl'EO' EllFO' Fl}

sort

v
{AO'FO'Ali Fl'BO'Fli EO'DO' El; D1; COJ Cl}

Xp: put X in the stack
Xq1: remove X in the stack

23

How to Choose Sweeping Axis ?

* kDOPs -> Sweep in the kDOPs’ axis
* Sphere, AABB, OOBB -> XYZ-axis or PCA

Highest
‘ / variance

Spatial Hashing using Regular Grid

* Putting circles in a grid based on circles’ center positions

* Grid length is maximum diameter of the circle
mm)> Look only 1-ring neighborhood

Possible collisions:
{AIE}I {EIC}I {CID}I {DIB}

No need to check for {E,D},{C,B}...etc

Spatial Hashing using Regular Grid

* Creating look-up table from grid index to circle index

circleindex A B C D E =

grid index

> 5 4

-

2235‘34‘45

B= |index of A

jagged array
Bligrid] <= j < B[igrid+1]
icircle=A[j] e

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)
2.Split the space along median

>

Ordered with y-axis

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)

2.Split the space along median
3.Repeat along other axis (e.g., x-axis)

A

e

AN

>

Ordered with x-axis

28

Space Partitioning with K-D Tree

1.Select axis (e.g., y-axis)
2.Split the space along median
3.Repeat along other axis (e.g., x-axis)

/A

29

Bounding Volume Hierarchy (BVH)

* Near triangles are in the same branch
* Each node has a BV that includes two child BVs

————————— g

Example of BVH Data Structure in C++

index 0 1 2 3 4 5 6
left-child index 1 3 4 tri index tri index tri index tri index
Right-child index |2 5 6 -1 -1 -1 -1

BV data

template <class T>

class CNodeBVH {
unsigned int ichild_left;
unsigned int ichild_right;

T BV;

};

std::vector<CNodeBVH<CAABB>> aNodeBVH;

Evaluation of BVH using Recursion

* Ask question to the one node -> that node asks the same
guestion to two child nodes

A, do you intersect with a ray?
A, do you have self intersection?

Let me ask my
children

Top-down Approach to Build BVH

* Use PCA for separating triangles into two groups

dq . ‘ﬁ\ arianc 4 7@
» .

« L U IS

(A e (A/I Highest (X

variance

Linear BVH: Fully Parallel Construction

e Construct BVH based on Morton code (i.e., Z-order curve)

* Two cells with close Morton codes tends to be near
2™ division

2D square domain with 2™ edge division

) 22" number of cells
Cell index is size of 2n in binary

2™ division

Linear BVH: Fully Parallel Construction

e Convert XYZ coordinate into 1D (linear) integer coordinate

A B C D
2 ¢ X X 2 ¢
12 6 15 9
1 0 1 1
1 1 1 0
0 1 1 0
0 0 1 1

O O o o |©

Linear BVH: Fully Parallel Construction

 Sort objects by their Morton codes

E B D A C
x X X X X
0 6 9 12 15
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1
0 0 1 0 1

From Morton Code to BVH Tree

* Divide tree when digits of sorted Morton codes are different

E(Yl B |X] D |4l AW X
x | % x x‘
12 15
C » %

[\o)

[

O O oIl ©
O R IOl o

= O |0
O |10k
Y

Reference

e “Real-Time Collision Detection” by Christer Ericson

Japanese translation
available

F=LTQTIITDI=HD
UPNEALERE

®® Christer Ericson
R hHRY

38

Reference

* GPU Gems 3: Chapter 32. Broad-Phase Collision Detection
with CUDA

GPUGems 3

Available for free at: https://developer.nvidia.cn/gpugems/gpugems3/part-v-physics-
simulation/chapter-32-broad-phase-collision-detection-cuda

Reference on Linear-BVH

* Thinking Parallel, Part lll: Tree Construction on the GPU
by Tero Karras

W0 Q < ¢)) & 7
0 o 0 Tﬁ’/ \PT/ \;‘# \f/ 1
0 lo| 0| o o 1] 1] 1
0 lo| 1 [1 |o o] 0| 1
0 1] 0| o ‘ 0| 1
g g 3 S 0]

(0]

o] ’ |1, 2]

https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/ :)

