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1 linear elastic body

1.1 Distortion in Linear Elastic Body
For linear elastic bodies, the linear distortion ε is expressed as follows.

ε =
1
2

(∇X ⊗ u + u ⊗ ∇X) (1)

2



εi j =
1
2

(
∂ui

∂X j
+
∂u j

∂Xi
) (2)

Here u is the displacement from the non-deformed state.

1.2 Constitutive expression of linear elastic body
The stress σ of an isotropic linear elastic body can be written based on linear strain as
follows.

σ = λ(trε)I + 2µε (3)

However, λ and µ are constants of Rame. Write this as a component and it is as
follows,

σi j = λεkkδi j + 2µεi j (4)

Moreover, λ, µ has the following relationship with Young’s modulus E and Poisson
ratio ν as follows.

λ =
Eν

(1 + ν)(1 − 2ν)
(5)

µ =
E

2(1 + ν)
(6)

1.3 Problem setting
Displacement is fixed on S 1.

u = ū ( on S 1 ) (7)

Such boundary conditions are called fixed boundary conditions and displacement
boundary conditions.

Stress is applied on S 2.

σT · n = t ( on S 2 ) (8)

Such a boundary condition is called a stress boundary condition.
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1.4 weak formalization
Basically, the linear elastic body deforms the equilibrium equation to weak formaliza-
tion, but we do numerical approximation there. When dealing with a large deformation,
the original equilibrium equation is largely changed so that it shifts. However, it is less
affected by minute deformation.

From Cauchy’s first principle

ρ
∂v
∂t

∣∣∣∣∣
X

= ρg + ∇ · σ (9)

An object in a static equilibrium state satisfies the following expression because the
acceleration is 0

−∇ · σ = ρg (10)

To weakly formalize it, multiply both sides of arbitrary function δu which becomes
0 on S 1 and integrate it with V before deformation.

−

∫
V
δu · (∇ · σ)dV =

∫
V
δu · ρgdV (11)

Modify the integrand of the first term on the left side
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δu · (∇ · σ) = δu j
∂σi j

∂xi
' δu j

∂σi j

∂Xi
(12)

=
∂

∂Xi
(δu jσi j) −

∂δu j

∂Xi
σi j (13)

=
∂

∂Xi
(δu jσi j) −

1
2

(
∂δu j

∂Xi
+
∂δui

∂X j
)σi j =

∂

∂Xi
(δu jσi j) − δεi jσi j (14)

= ∇ · (σ · δu) − δε : σ (15)

Substituting this

−

∫
V
∇ · (σ · δu) − δε : σdV =

∫
V
δu · ρgdV (16)

Move the first term of the integrand on the left side to the right side∫
V
δε : σdV =

∫
V
δu · ρgdV +

∫
V
∇ · (σ · δu)dV (17)

Adapting Gauss’ divergence theorem to the second term on the right side,∫
V
σ : δεdV =

∫
V
δu · ρgdV +

∫
∂V

N · (σ · δu)dS (18)

Modify the second term on the right side.

∫
∂V

N · (σ · δu)dS =

∫
S 2

N · (σ · δu)dS (19)

'

∫
S 2

n · (σ · δu)dS (20)

=

∫
S 2

δu · σT · ndS =

∫
S 2

δu · tdS (21)

When this is substituted, the weakly formatted problem eventually becomes as fol-
lows.

Weakly Formulated Governing Equation

{ ∫
V
σ : δεdV =

∫
V
ρδu · gdV +

∫
S 2
δu · tdS {δu | δu = 0 (on S 1)}

u = ū ( on S 1 )
(22)
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1.5 Transformation of Weakly Formulated Governing Equations to
Display Using Displacement

Although weak formalization was possible with the above equation, since we solve the
displacement as a variable, we have to transform the above weak form equation into an
expression with displacement.

Substituting constituent formulas of linear elastic bodies into stress,∫
V

(λ(trε)I + 2µε) : δεdV =

∫
V
ρδu · gdV +

∫
S 2

δu · tdS (23)∫
V
λ(trε)(trδε) + 2µε : δεdV =

∫
V
ρδu · gdV +

∫
S 2

δu · tdS (24)

Applying the summary rule to i, j and writing with components will be as follows.∫
V
λε j jδεii + 2µεi jδεi jdV =

∫
V
ρδuigidV +

∫
S 2

δuitidS (25)

∫
V
λ
∂u j

∂X j

∂δui

∂Xi
+ 2µ

1
2

(
∂ui

∂X j
+
∂u j

∂Xi

)
1
2

(
∂δui

∂X j
+
∂δu j

∂Xi

)
dV =

∫
V
ρδuigidV +

∫
S 2

δuitidS

(26)
Expand the second term in the left-hand integrand∫

V
λ
∂u j

∂X j

∂δui

∂Xi
+

1
2
µ

(
∂ui

∂X j

∂δui

∂X j
+
∂u j

∂Xi

∂δui

∂X j
+
∂ui

∂X j

∂δu j

∂Xi
+
∂u j

∂Xi

∂δu j

∂Xi

)
dV =

∫
V
ρδuigidV+

∫
S 2

δuitidS

(27)
Subscript of δu is changed to i and suffix of u becomes j Subscript substitution is as

follows
Governing equations weakly formulated based on displacement


∫

V
λ
∂u j

∂X j

∂δui
∂Xi

+ µ
(
∂u j

∂Xk

∂δui
∂Xk
δi j +

∂u j

∂Xi

∂δui
∂X j

)
dV =

∫
V
ρδuigidV +

∫
S 2
δuitidS

{∀δu | δu = 0 (on S 1)}
u = ū ( on S 1 )

(28)

2 discretization of finite element method

2.1 divide integral region∫
V
λ
∂u j

∂X j

∂δui

∂Xi
+ µ

(
∂u j

∂Xk

∂δui

∂Xk
δi j +

∂u j

∂Xi

∂δui

∂X j

)
dV =

∫
V
ρδuigidV +

∫
S 2

δuitidS (29)

6



The above equation is written in integral. Since the integral is sum, it is possible to
perform integration while dividing the integral area and add up the integral to calculate
the above equation.

Therefore, if Ve is an area obtained by dividing V into elements and S 2e is an area
obtained by dividing S 2 into elements, the formula can be written as follows.

nVe∑
e

∫
Ve

λ
∂u j

∂X j

∂δui

∂Xi
+ µ

(
∂u j

∂Xk

∂δui

∂Xk
δi j +

∂u j

∂Xi

∂δui

∂X j

)
dV =

nVe∑
e

∫
Ve

ρδuigidV +

nS 2e∑
e

∫
S e

δuitidS (30)

However, nVe and nS 2e are the number of element divisions of V and S 2e respec-
tively.

2.2 Introduction of interpolation function
In Ve the function u j, δui is discretized by the following shape function N. However,
for node n̄ on surface S 1 on which fixed boundary condition is set, it is un̄

j = g1, δun̄
i = 0.

u j = Nnun
j (31)

δui = Nmδum
i (32)

Likewise, within S 2e the function u, δu is discretized by the following shape function
N̄.

u j = N̄nun
j (33)

δui = N̄mδum
i (34)

When this is substituted into the above equation, it becomes as follows.

nVe∑
e

∫
Ve

λ
∂Nnun

j

∂X j

∂Nmδum
i

∂Xi
+ µ

∂Nnun
j

∂Xk

∂Nmδum
i

∂Xk
δi j + µ

∂Nnun
j

∂Xi

∂Nmδum
i

∂X j
dV (35)

=

nVe∑
e

∫
Ve

ρNmδum
i gidV +

nS 2e∑
e

∫
S e

N̄mδum
i tidS

Here, un
j , δu

m
i is the value of the node, it is not a function and can be put out of the

integral. After putting them outside the integration, they are summarized as follows.
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δum
i

 nVe∑
e

∫
Ve

λ
∂Nn

∂X j

∂Nm

∂Xi
+ µ

∂Nn

∂Xk

∂Nm

∂Xk
δi j + µ

∂Nn

∂Xi

∂Nmδ

∂X j
dV

 un
j (36)

= δum
i

 nVe∑
e

∫
Ve

ρNmgidV +

nS 2e∑
e

∫
S e

N̄mtidS


This can be written in matrix as follows.

δum
i Km,n

i, j un
j = δum

i Fm
i (37)

Km,n
i, j =

nVe∑
e

Ke
a,b
i, j (38)

However, the intra-element node number (a, b) corresponds to the whole node num-
ber (m, n).

element stiffness matrix of linear elastic body

Ke
a,b
i, j =

∫
Ve

λ
∂Nb

∂X j

∂Na

∂Xi
+ µ

∂Nb

∂Xk

∂Na

∂Xk
δi j + µ

∂Nb

∂Xi

∂Na

∂X j
dV (39)

Fm
i =

nVe∑
e

∫
Ve

ρNmgidV +

nS 2e∑
e

∫
S e

N̄mtidS (40)

3 discretization in elements

3.1 isoparametric element
For isoparametric elements, integrands at the integration point α are calculated, mul-
tiplied by Jacobian J and weight ωα, respectively, and added by integration points to
perform integration.

Ke
a,b
i, j =

∫
Ve

λ
∂Nb

∂X j

∂Na

∂Xi
+ µ

∂Nb

∂Xk

∂Na

∂Xk
δi j + µ

∂Nb

∂Xi

∂Na

∂X j
dV (41)

=
∑
α

ωα

(
λ
∂Nb

∂X j

∂Na

∂Xi
+ µ

∂Nb

∂Xk

∂Na

∂Xk
δi j + µ

∂Nb

∂Xi

∂Na

∂X j

)
Jα (42)

Of course, the integrand has different values for each integral.
Calculate ∂N

∂X for each integration point and find the integrand.
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3.1.1 programming example

We will list the program of the part which adds the value for each integral by reference.
Correspondence of symbols is as follows

1. myu = µ, lambda = λ, rho = ρ, g [i] = gi

2. dndx [a] [i] = ∂Na

∂Xi
, an [a] = Na, detwei = ωαJα

3. emat [a] [b] [i] [j] = Ke
a,b
i, j

1 // Create element stiffness matrix

2 for(int inoel=0; inoel<nnoel; ++inoel){
3 for(int jnoel=0; jnoel<nnoel; ++jnoel){
4 double dtmp1 = 0.0;
5 for(int idim=0; idim<ndim; ++idim){
6 for(int jdim=0; jdim<ndim; ++jdim){
7 emat[inoel][jnoel][idim][jdim] += detwei*lambda*dndx[inoel][idim]*dndx[jnoel][jdim];

8 emat[inoel][jnoel][idim][jdim] += detwei*myu*dndx[jnoel][idim]*dndx[inoel][jdim];

9 }

10 dtmp1 += dndx[inoel][idim]*dndx[jnoel][idim];

11 }

12 for(int idim=0; idim<ndim; ++idim){
13 emat[inoel][jnoel][idim][idim] += detwei*myu*dtmp1;

14 }

15 }

16 }

17

18 // Create internal and external force

19 for(int inoel=0; inoel<nnoel; ++inoel) {
20 for(int idim=0; idim<ndim; ++idim) {
21 eforce[inoel][idim] += g[idim]*rho*an[inoel]*detwei;

22 }

23 }

4 Vector representation of tensor
Cauchy stress is symmetric tensor from Cauchy’s second principle. Also, the linear
distortion is obviously symmetric tensor from the definition. In other words,

σi j = σ ji (43)

εi j = ε ji (44)

Since the tensor was a linear transformation from a vector to a vector, it can be
displayed as a matrix. The number of components at this time is nine if it has three
dimensions.
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However, in the case of such a symmetric tensor, since the number of independent
components is six, if the number of independent components is arranged in a vector
manner, it can be compressed and written, which is useful as something.

{σ} =



σxx

σyy

σzz

σxy

σxz

σyz


=



σxx

σyy

σzz

τxy

τxz

τyz


(45)

,

{ε} =



εxx

εyy

εzz

2εxy

2εxz

2εyz


=



εxx

εyy

εzz

γxy

γxz

γyz


(46)

Please note that distortion is doubled and written only in the case of shear distor-
tion. In this way the distortion vectorized using γ doubling the shear part of ε is called
engineering distortion. In engineering this distortion is used exclusively.

Using engineering distortion that doubles the shear strain part, you can usually write
the strain energy density ρW written by the tensor product of the stress tensor and the
strain tensor by the dot product of the vector.

ρW =
1
2
σ : ε =

1
2
σi jεi j =

1
2
{σ} · {ε} (47)

The stress-strain relational expression of the linear elastic body has the following
relationship.

σi j = λεkkδi j + 2µεi j (48)

By replacing this with a suffix so that the subscript of ε becomes k, l

σi j = λεklδklδi j + 2µεklδikδ jl = (λδklδi j + 2µδikδ jl)εkl = Ci jklεkl (49)

Here, the tensor at the fourth floor C, which relates stress and strain, is called con-
stitutive law tensor.

10



Using these, the stress-strain relational expression becomes as follows when stress
and strain are changed from tensor notation to vector notation.

σxx

σyy

σzz

τxy

τxz

τyz


=



λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ

µ
µ

µ





εxx

εyy

εzz

γxy

γxz

γyz


(50)

5 2D Problem

5.1 Planar Distortion
When the thickness in the z direction is large, the displacement is considered to be two
dimensional. That is, the displacement in the z direction is considered to be small. Also,
it is considered that the x displacement and the y displacement are constant with respect
to the z direction. Such a state is called a planar strain state.

In other words,

uz = 0,
∂ux

∂Xz
= 0,

∂uy

∂Xz
= 0 (51)

Is satisfied.
Using this,

εzz = 0, γxz = 0, γyz = 0 (52)

It can be seen that it is.
Calculate the strain energy density ρW using this.
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ρW =
1
2
{σ} · {ε} (53)

=
1
2



εxx

εyy

εzz

γxy

γxz

γyz



T 

σxx

σyy

σzz

τxy

τxz

τyz


(54)

=
1
2



εxx

εyy

εzz

γxy

γxz

γyz



T 

λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ

µ
µ

µ





εxx

εyy

εzz

γxy

γxz

γyz


(55)

here, εzz = 0, γxz = 0, γyz = 0 Substituting into this equation,

ρW =
1
2



εxx

εyy

0
γxy

0
0



T 

λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ

µ
µ

µ





εxx

εyy

0
γxy

0
0


(56)

=
1
2

 εxx

εyy

γxy


T  λ + 2µ λ

λ λ + 2µ
µ


 εxx

εyy

γxy

 (57)

Compared with the original three-dimensional expression, you can see that simply
reduce the dimension from 3 to 2 without changing the constant of bf Ram ’e.

5.2 plane stress
When the thickness in the z direction is sufficiently small, the plane stress

σzz = 0, τxz = 0, τyz = 0 holds.
Let’s calculate the distortion backward from the next stress-strain relational equation

in order to find the relation about strain.
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

σxx

σyy

0
τxy

0
0


=



λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ

µ
µ

µ





εxx

εyy

εzz

γxy

γxz

γyz


(58)

εzz = − λ
λ+2µ (εxx + εyy), γxz = 0, γyz = 0.

When you look closely at ezz, it shows that it is expanded (compressed) in the z
direction if it is compressed (expanded) by exx, eyy because it has a negative sign. It is
seen that when it is compressed in the plane, it expands in the thickness direction.

When this is used to calculate the strain energy density ρW,

ρW =
1
2



εxx

εyy

− λ
λ+2µ (εxx + εyy)

γxy

0
0



T 

λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ

µ
µ

µ





εxx

εyy

− λ
λ+2µ (εxx + εyy)

γxy

0
0


(59)

=
1
2

 εxx

εyy

γxy


T  λ

′ + 2µ λ′

λ′ λ′ + 2µ
µ


 εxx

εyy

γxy

 (60)

. However, it is λ′ =
2λµ
λ+2µ .

Of the constants of Ram ’e, you can see that bf should be apparently changed and
two-dimensioned from three dimensions.

6 Calculation example of simple two-dimensional prob-
lem

Problems that have a simple shape and cause uniform distortion can be analytically
solved. By solving such a simple problem it is possible to verify that the analysis pro-
gram is really correct.

6.1 2 Dimensional Simple Pulling Problem
As shown in the following figure, a rectangular object is pulled and deformed.
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Figure 1: two-dimensional simple stretch problem

If pulling in the x direction, no force acts in the y direction, so the vertical stress in
the y direction becomes 0.

σyy = 0 (61)

6.1.1 planar distortion problem

σyy = λεxx + (λ + 2µ)εyy + λεzz = λεxx + (λ + 2µ)εyy = 0 (62)

Than,

εyy = −
λ

λ + 2µ
εxx (63)

.

ν∗ = −
εyy

εxx
=

λ

λ + 2µ
=

ν

1 − ν
(64)

.
σxx = (λ + 2µ)εxx + λεyy = (λ + 2µ)εxx + λ(− λ

λ+2µ )εxx =
4µ(λ+µ)
λ+2µ εxx

From now on, the apparent Young’s modulus E∗

E∗ =
σxx

εxx
=

4µ(λ + µ)
λ + 2µ

=
E

1 − ν2 (65)
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6.1.2 plane stress state

In the planar stress state, it is σzz = 0, which is consistent with the three-dimensional
simple tension. Accordingly

ν∗ = ν, E∗ = E (66)

.

7 4 points to be aware of when analyzing linear elastic
body

Careful attention to the analysis of the linear elastic body is as follows as four points.

1. Accuracy of solution drops as Poisson’s ratio approaches 0.5.

2. The bending problem is bad in the accuracy of the solution depending on the type
of the element

3. Deformation, distortion, stress are evaluated smaller than actual.

4. In the problem of object rotation, the mesh expands and gets unrealistic solution.

Each of the following points will be briefly described below.

7.1 About the problem that the accuracy of solution decreases when
Poisson’s ratio approaches 0.5

As the Poisson’s ratio approaches 0.5, the bulk modulus increases infinitely. This means
that the reaction force against volume change becomes large, An incompressible con-
straint condition that there is no volume change is gradually added to the displacement.

In the case of such an uncompressed problem, stress is generated by a non-determinate
stress generated from a constraint force in addition to the stress generated from the dis-
placement, so it is not possible to analyze only displacement as a variable. We analyze
this problem by introducing pressure variables. Analysis of elastic bodies using dis-
placement variables and pressure variables is called u / p formulation. Adding pressure
nodes to introduce pressure variables, but since the analysis has good patterns in the
manner of placement within the elements of pressure nodes and displacement nodes,
they must be adopted.
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7.2 About bending problems depending on the type of elements for
problems with poor solution accuracy

When analyzing the bending of a thin structure such as a beam when the degree of the
interpolation function such as the primary element is low, Solutions that are harder than
actual are obtained. This is a phenomenon called membrane locking and attention is
necessary.

This also adds to the displacement the Kirchhoff condition that the out-of-plane
shear is 0 when bending a thin structure like a beam, so the accuracy of the solution
deteriorates.

High accuracy can be improved by using higher order elements, using reduced in-
tegration and selective reduced integration. It is also effective to stop the solid element
and use structural elements.

The details of the rocking problem of the two-dimensional beam bending problem
are detailed below. : Study on Accuracy of 2D Elastic Body Element in Finite Element
Method — http: //globe.nagaokaut.ac.jp/yoshisyu/2003/kensetu/pdf/ken04607.pdf

7.3 About the problem that deformation, distortion, and stress are
evaluated to be smaller than actual

From the variational principle, the analytical solution is the solution with the lowest
potential energy. The solution obtained by the finite element method is limited to a
function that can be expressed on the mesh, and it is the solution with the smallest energy
among them. Therefore, the energy of the finite element method is always larger than the
energy of the analytical solution. Roughly speaking, this means that the deformation,
strain and stress of the finite element method are evaluated smaller than the deformation
of the analytical solution. One purpose of the elastic body analysis by the finite element
method is whether or not the structural member breaks. It is evaluated as harder to
break than actual. This is dangerous. Careful attention must be paid, such as analyzing
different mesh sizes and seeing convergence.

7.4 The problem of rotating the object about the problem that the
mesh expands to obtain an unrealistic solution

Since the constituent formula of the linear elastic body does not satisfy the objectivity,
it is unexpected to rotate. When the linear elastic body is rotated, an expansion solution
is obtained.

The figure below shows the cantilever of a linear elastic body bent under a down-
ward gravity force. It turns out that the rotated part expands greatly and is unrealistic
deformation.
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Figure 2: inflation if the linear solid material when it is rotated

First of all, linear elastic bodies should only be used for micro deformation micro
distortion problem. The St. Venant-Kirchhoff body is also compatible with large defor-
mation (that is rotation) due to micro distortion problem.

7.4.1 detailed analysis of rotation of linear elastic body

Let’s examine in detail what happens when a two-dimensional linear elastic body is
rotated in a rigid body.

The coordinate (x, y) in the case where the point (X,Y) is rotated by the θ rigid body
counterclockwise around the origin,

(x, y) = (X cos θ − Y sin θ, X sin θ + Y cos θ)
The displacement ux, uy from the point before rotation
(ux, uy) = (x − X, y − Y) = (X(cos θ − 1) − Y sin θ, X sin θ + Y(cos θ − 1))
Therefore, the linear distortion becomes as follows.

εxx =
∂ux

∂X
= cos θ − 1 (67)

εyy =
∂uy

∂Y
= cos θ − 1 (68)

γxy =
∂ux

∂Y
+
∂uy

∂X
= 0 (69)

Therefore, it can be seen that vertical distortion of isotropic compression is gener-
ated from εxx = εyy < 0. Stress acting to expand by vertically compressing works. Since
no stress is applied to the rotating part of the beam, in order to make the stress zero,
eventually, an expanded solution is obtained.
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8 Mathematical topics
Define the norm as follows

||ε(v)||20 =

∫
Ω

ε(v) : ε(v)dΩ (70)

||v||20 =

N∑
i=1

∫
Ω

v2
i dΩ (71)

||v||21 = ||v||20 +

N∑
i=1

||∇vi||
2
0 (72)

The weakly shaped linear elastic body is as follows∫
Ω

Aε(u) : e(φ)dΩ =< f , φ >H−1,H1(Ω)N ∀φ ∈ H1
Γ(Ω)N (73)

Here, substitute u for φ, and from A’s stubbornness

α||ε(u)||20 ≤
∫

Ω

Aε(u) : ε(u)dΩ =< f , u >H−1,H1(Ω)N≤ || f ||H−1 ||u||1 (74)

8.1 uniqueness of solution existence
Korn’s first inequality holds.

c||v||21 ≤ ||v||
2
0 + ||ε(v)||20 ∀v ∈ H1(Ω)N (75)

8.1.1 Korn’s second inequality

Korn’s second inequality

c′||v||21 ≤ ||ε(v)||20 ∀v ∈ H1
Γ(Ω)N (76)

It shows by backhoe method that it holds. If the top does not hold,
Fulfilling ||vn||1 = 1
vn like limn→∞ ||ε(vn)||0 = 0 exists. Assuming this, it indicates that contradiction

occurs.
From the reserve theorem of Sovlev H1 space is compact in L2 space. Therefore,

vn → v strongly in L2(Ω)N (77)

There is such v ∈ H1
Γ
(Ω)N .
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Here, from Korn’s inequality

c||vn − vm||
2
1 ≤ ||vn − vm||

2
0 + ||ε(vn − vm)||20 ≤ ||vn − vm||

2
0 + ||ε(vn)||20 + ||ε(vm)||20 (78)

If you increase n,m you can make the right side as small as you want. Thus vn is a
Cauchy string on H1(Ω)N . Therefore vn converges to v with H1(Ω)N .

||ε(v)||0 = lim
n→∞
||ε(vn)||0 = 0 (79)

Because it is ε(v) = 0.
Since v is 0 on the boundary Γ, it is v = 0.
This is contrary to ||vn||1 = 1. So the title was shown.

8.1.2 Equality of norm of zzzokljsd with strain tensor and displacement

Since the inverse inequality is self explanatory, it can be said that ||φ||1 and ||ε(φ)||0 are
equivalent norms.

That is, the ellipticity in the H1 of the operator can be said as follows.

α||u||21 ≤
∫

Ω

Aε(u) : ε(u)dΩ ≤ C||u||21 (80)

From this, it can be said that there is only solution u ∈ H1
Γ
(Ω)N from Lax-Milgram’s

theorem.
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