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1 Introduction

In this document, we explain the detailed implementation of the MITC3 shell
element presented by Lee et al. ?.

Here, we assume the “plate bending” situation where in undeformed state a
flat plate is placed on the XY-plane with Z-axis director vectors. In deformed
sate, the plate is deflected in the Z-axis direction and the director vector is
rotated with an axis that is orthogonal to the Z-axis.

2 Undeformed Position

In general case, the position inside the MITC shell can be written using the
natural coordinate (r, s,t) as:
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where the a is the thickness of the plate. L’ is the shape function of the triangle
element L' =1—r—s, L' =r L? =s.
In the plate bending problem setting, the position can be written as:
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The covariant bases of the embedded coordinates are computed as:
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The contravariant bases of the embedded coordinate are computed as:
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3 Displacement

we assume the plate bending situation where the displacement at the node has
only z component. The point after displacement can be written as:
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v stands for the 3x3 skew-symmetric matrix from the axial vector v = (a, 3, O)T.
Substituting undeformed position (??) from the deformed position (?7?), we
have displacement as
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4 Linear Strain

The gradient of the deformation can be computed by differentiating u in (??)
with the natural coordinate (r, s, t).
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Using the embedded coordinates in (?7), the coeffieicnts of the linear strain



can be written as:

ou
€rr = Gr : E
= T XY (5 ) - T YY)
ou
€ss = Gsa
at at
= T X0 (8 - 50 - TV
1 ou ou
€Ers = 2<G7~88+Ggar>
at at
= LX) (8P 80 - YY)
FEX? X0 (81— 60 - L ¥O) -
€t = 0
1 ou ou
€rt — 2<Gt6r+Grat>
3
_a 1 0 i
i (o))
1 ou ou
€st = 2<Gtag+Gsat)

3
_a 2 0 i
= 2{uz—uz+GS~<;Lv>}

at —a?)
a? —a%
a? —af%
at —a?)

(20)

(21)

(22)

Let us define the trying points A,B,C at the edge of the tiangle such that
the barycentric coordinates (L°, L', L?) are (0.5,0.5,0) at A, (0.5,0,0.5) at B,

(0,0.5,0.5) at C. The shear strain at these trying point can be written as:
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In MITC3, the order of the transverse shear strain is reduced to avoid the
shear locking. The transverse shear strain €,; and €s; can be written using the

values at the trying points as:
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Using these coefficients the strain tensor can be written as:
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5 Stress and Constitution Tensors

Let us define following two tensors
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for the second-order tensor A, the inner products for these two tensor are
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In linear elasticity, the linear stress can be written as:
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The constitution tensor can be written as:
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The stress can be written as
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the elastic potential energy density can be written as:
o:e= eijCijklekl

6 Vector Notations of Tensors
we define a strain vector e and the stress vector s as
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with this definition, the energy density can be written with the dot product
e -s. The constitute matrix C, where s = Ce is computed as

Crrrr Crrss QCrrrs 2crrrt QCrrrs
Cssrr Cssss 2(0887s QCssrt 20887s
C = 20T 9OTsss  A(TSTS 4crsrt 4C'rsrs (44)
QOT’tT‘T 207"1&55 407’2&7’5 4crtrt 407’2&7’5
QCstrr QCstss 405157"8 4cstrt 4cst7‘s

7 Mass Matrix

We need mass matrix for a dynamic analysis. Let us consider the lumped mass
matrix for
Using the deformation (?7)
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Hence the mass matrix when the degree of freedom at the node {u.,«, 3}
becomes
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where A; is the area of the mesh belong to the node 1.



