Linear System Solver

Adjacency Matrix

Connected edges takes 1 in the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Graph Laplacian Matrix

All the connected edges takes -1 and diagonal takes valence

$$L = \begin{bmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ 0 & -1 & 2 & 0 & -1 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

valence: # of connected points

Solving Constraints v.s. Optimization

Solution should be at the bottom of this hole

Graph Laplacian Matrix as Constraints

• $L\vec{v} = 0$ means all the vertices are average of connected ones

$$L\vec{v} = 0$$

$$\Rightarrow \begin{bmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ 0 & -1 & 2 & 0 & -1 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{pmatrix} = 0$$

Graph Laplacian Matrix as Optimization

• $L\vec{v}=0$ means sum of square difference is minimized

$$W = \frac{1}{2} \sum_{e \subset \mathcal{E}} ||v_{e_1} - v_{e_2}||^2$$
$$= \frac{1}{2} \vec{v}^T L \vec{v}$$

$$W$$
 is minimized $\Rightarrow \frac{\partial W}{\partial \vec{v}} = L\vec{v} = 0$

Diagonally Dominant Matrix

 Magnitude of diagonal element is larger than the sum of the magnitude of off-diagonal elements

$$|A_{ii}| \ge \sum_{j \ne i} |A_{ij}| \qquad A = \begin{bmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ 0 & -1 & 2 & 0 & -1 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

Linear system with diagonally dominant matrix should be easy to solve

Types of Linear Solver

Direct Method

- Gaussian elimination
- LU decomposition

Compute the solution in a fixed procedure

Classical Iterative Methods

- Jacobi method
- Gauss-Seidel method

Krylov Subspace Method

Conjugate gradient method

Update the solution iteratively

Faster than the classical method

LU Decomposition

Triangular Matrix

lower triangle matrix

$$L = egin{bmatrix} \ell_{1,1} & & & & 0 \ \ell_{2,1} & \ell_{2,2} & & & \ \ell_{3,1} & \ell_{3,2} & \ddots & & \ dots & dots & \ddots & \ddots & \ \ell_{n,1} & \ell_{n,2} & \dots & \ell_{n,n-1} & \ell_{n,n} \end{bmatrix}$$

upper triangle matrix

$$U = egin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \dots & u_{1,n} \ & u_{2,2} & u_{2,3} & \dots & u_{2,n} \ & & \ddots & \ddots & dots \ & & & \ddots & \ddots & dots \ & & & \ddots & u_{n-1,n} \ 0 & & & u_{n,n} \end{bmatrix}$$

Forward Substitution

• It is very easy to solve linear system for triangular matrix

$$Lec{x} = ec{b} \ x_1 = ec{b} \ x_1 = rac{b_1}{\ell_{1,1}}, \ x_2 = rac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}, \ dots \ \ell_{m,1} x_1 + \ell_{m,2} x_2 + \cdots + \ell_{m,m} x_m = b_m \ x_m = rac{b_m - \sum_{i=1}^{m-1} \ell_m}{\ell_{m,m}} \ .$$

$$x_1 = rac{b_1}{\ell_{1,1}}, \ x_2 = rac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}, \ dots \ x_m = rac{b_m - \sum_{i=1}^{m-1} \ell_{m,i} x_i}{\ell_{m,m}}.$$

Solving Linear System: LU Decomposition

$$A\vec{x} = \vec{b}$$

$$A = LU$$

$$L\overrightarrow{U}\overrightarrow{x} = \overrightarrow{b}$$

Let
$$\vec{y} = U\vec{x}$$
, then $L\vec{y} = \vec{b}$

1. Solve $L\vec{y} = \vec{b}$ using forward substitution

2. Solve $U\vec{x} = \vec{y}$ using backward substitution

Block LU Decomposition

$$\begin{bmatrix} A & B \\ C & E \end{bmatrix} = \begin{bmatrix} I & \mathbf{0} \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ \mathbf{0} & E - CA^{-1}B \end{bmatrix}$$

Schur compliment

$$= \begin{bmatrix} I & \mathbf{0} \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & \mathbf{0} \\ \mathbf{0} & E - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ \mathbf{0} & I \end{bmatrix}$$

LDU Decomposition of 1st Row/Column

LDU Decomposition of 2nd Row/Column

LDU Decomposition

Classical Iterative Solver

Gauss-Seidel Method

Solve & update solution x row-by-row

Jacobi Method

1. Solve each row independently to obtain x'

2. Update solution at the same time as x = x'

Stencil of a 2D Regular Grid

 Stencil represents the diagonal & offdiagonal component of matrix for a row

graph Laplacian stencil

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

stencil in real life

credit: bukk @ wikipedia

diagonal component

Red-Black Ordering for Regular Grid

 The data of same color can be processed in any order (nosynchronization is necessary for parallel computation)

Krylov Subspace Method

Top 10 Algorithms of the 20 Century

- 1946: The Metropolis Algorithm for Monte Carlo.
- 1947: Simplex Method for Linear Programming.
- 1950: Krylov Subspace Iteration Method.
- 1951: The Decompositional Approach to Matrix Computations.
- 1957: The Fortran Optimizing Compiler.
- 1959: QR Algorithm for Computing Eigenvalues.
- 1962: Quicksort Algorithms for Sorting.
- 1965: Fast Fourier Transform.
- 1977: Integer Relation Detection.
- 1987: Fast Multipole Method

Jack Dongarra, Francis Sullivan, "Top Ten Algorithms of the Century", Computing in Science and Engineering, Volume 2, Number 1, January/February 2000, pages 22-23.

What is Krylov Subspace?

Space spanned by a vector and its matrix multiplications

$$\mathcal{K}_k = \{\vec{r}, A\vec{r}, A^2\vec{r}, \cdots, A^{k-1}\vec{r}\}$$

What is Krylov Subspace Method?

• Finding the best solution of a linear system in the Krylov subspace

What is Conjugate Gradient (CG) Method?

• Given a symmetric positive definite matrix A, the solution of $A\vec{x} = \vec{r}$ minimize $W(x) = 1/2 \vec{x}^T A \vec{x} - \vec{r}^T \vec{x}$

Symmetric Positive Definite Matrix

• $\langle x, y \rangle_A = x^T A y$ has the property of inner product

1.
$$\langle x_1 + x_2, y \rangle_A = \langle x_1, y \rangle_A + \langle x_2, y \rangle_A$$

2.
$$\langle \alpha x, y \rangle_A = \alpha \langle x, y \rangle_A$$

3.
$$\langle x, y \rangle_A = \langle y, x \rangle_A$$

4.
$$\langle x, y \rangle_A \ge 0$$
, and $\langle x, x \rangle_A = 0 \Longrightarrow x = 0$

Symmetric Positive Definite Matrix

All eigenvalues are positive, the eigenvectors are orthogonal

$$A = R\Lambda R^T$$

$$y = \Lambda^{\frac{1}{2}} R^T x$$

$$x = R\Lambda^{-\frac{1}{2}}y$$

Unit circle in Euclidean space

A-Orthogonal Projection of the Solution

A-Orthogonal Projection on a Search Line

Poor Convergence of the Gradient Descent

• \odot We cannot simply move along the residual $\vec{r}_k = \partial W/\partial \vec{x}_k$

The solution goes jig-zag, seems not very efficient

Next Search Line is Chosen A-Orthogonal

Conjugate Gradient Method Algorithm

$$\vec{r}_{0} = \vec{p}_{0} = \vec{r}$$

$$\vec{x}_{0} = 0$$

$$for(k=0;k < k_max; ++k) \{$$

$$\alpha_{k} \coloneqq \frac{\vec{r}_{k}^{T} \vec{r}_{k}}{\vec{p}_{k}^{T} A \vec{p}_{k}}$$

$$\vec{x}_{k+1} \coloneqq \vec{x}_{k} + \alpha_{k} \vec{p}_{k}$$

$$\vec{r}_{k+1} \coloneqq \vec{r}_{k} - \alpha_{k} A \vec{p}_{k}$$

$$\beta_{k} \coloneqq \frac{\vec{r}_{k+1}^{T} \vec{r}_{k+1}}{\vec{r}_{k}^{T} \vec{r}_{k}}$$

$$\vec{p}_{k+1} \coloneqq \vec{r}_{k+1} + \beta_{k} \vec{p}_{k}$$
}

A-projection of the true solution on a search line

A-orthogonalization of the search line

Comparisons of Linear Solver

Direct Method

- Gaussian elimination
- LU decomposition

- © Solve most non-singular matrices
- 🙁 Costly for large matrix
- © Cost is same for easy matrices

Classical Iterative Methods

- Jacobi method
- Gauss-Seidel method

- Simple implementation
- © Cost is low for easy matrix
- Only for very easy matrix

Krylov Subspace Method

Conjugate gradient method

- © Simple implementation
 - © Faster than classical method