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1 Introduction
The CG method (Conjugate Gradient Methods) is a method proposed by M. R. Hestenes
and E. Stiefel in 1952 cite hestenes - methods

The CG method is a method for solving linear equations used for positive definite
symmetric matrices by an iterative method.
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1.1 Positive definite matrix
We write the inner product of vector u, v such as (u, v). The real-valued matrix A is
positive definite if

(Au,u) ≥ 0 ∀u ∈ Rn ( equality holds only i f u = 0 ). (1)

It means that A is symmetric

(Aa,b) = (a,Ab) ∀a,b ∈ Rn. (2)

Note that we define positive definite matrix and symmetric matrix using the inner
product. Inner product is very general concept that can be applied for the infinite di-
mensional vectors (or matrices). If you learn the functional analysis you probably learn
inner product space in the beginning, don’t you? In this document, we are dealing with
a n-dimensional matrix and vectors. We can simply written the symmetry as

AT = A (3)

Why the positive definite property of the matrix is a big deal? It is because a positive
definite matrix can define a norm that can be written as

||e||A = (Ae, e). (4)

In this document, we call this norm as A-norm. There are a lot of names for this norm, in
the FEM literature it may be called energy norm and in the functional analysis literature
it may be called operator norm.

2 Basic concept of CG method
Now, let’s solve the linear equation Ax = b using the CG method.

In the k-th iteration of the CG method, the A-norm of the error defined as

||e||2A = (e,Ae) (5)
= ||xk − x||2A = (xk − x,A(xk − x)) ≥ 0 (equality holds only i f xk = x). (6)

Here xk is the intermediate solution at the iteration k and x is the true solution of the
linear system. In between the intermediate solution and true solution is the error e =

xk − k.
The CG method is a method to find the best approximate solution xk that minimizes

the error in the subspace Kk + x0.
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Figure 1: The iteration of conjugate gradient method(In Eucledian space)

� �
f ind xk ∈ x0 +Kk that minimize ||x − xk||A, (7)� �

where Kk is the Krylov subspace

Kk = span{r0,Ar0,A2r0, · · · ,Ak−1r0}, (8)

where r0 = b − Ax0.
In this way, when the distance represented by the A norm with x in the subspace

Kk + x0 takes an extreme value, the following orthogonality relation clearly holds.

(xk − x,w)A = 0 ∀w ∈ Kk (9)

Note that the orthogonality is defined by the inner product using the matrix as (a,b)A =

(Aa,b). We use the symbol ⊥A for the orthogonality in the A-norm space

a⊥Ab⇔ (a,b)A = 0⇔ (Aa,b) = 0⇔ (Aa)⊥b. (10)

Using this, the CG method in (7) can be expressed as follows.� �
f ind xk ∈ x0 +Kk so that (xk − x)⊥AKk (11)� �

In other words, the CG method can be said to be a method of orthogonally projecting
the solution x to the subspaceKk +x0 in the inner product defined by the matrix. Krylov
subspace Kk is a finite dimensional subspace, so it is a complete linear space. Thus,
from the Lax-Milgram theorem, such projection always exists.

Also, since the residual rk at k times iteration is rk = A(xk − x), the CG method can
be said to find a solution as follows.

f ind xk ∈ x0 +Kk so that rk ⊥ Kk (12)
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This means that the solution is looked for in the Kk + x0 so that the residual rk is
orthogonal to the subspace Kk.

The CG method has a deep relationship with the Lanczos method, which is a method
of creating an orthonormal basis of Krylov subspace.

3 Basic procedure

3.1 Increment of the solution
Suppose that the increment of the solution from the k iterative solution xk to the k + 1
iterative solution xk+1 is written using the coefficient αk and the vector pk as

xk+1 − xk = αkpk. (13)

Since p determines the direction of solution increment, it is called search direction
vector.

Updating the solution to the k+2 iterative solution xk+2 The vector pk+1 is determined
as follows using the residual rk+1 of the solution xk+1, the coefficient βk, and the update
vector pk of the previous solution as follows

pk+1 = rk+1 + βkpk (14)

Below, we explain how to determine the coefficients β and α.

3.2 Determination of coefficient β
From the previous discussion, in the CG method, the difference between the exact so-
lution x and the iterative solution xk+1 was orthogonal in the A norm to the Krylov
subspace Kk+1. In other words,

xk+1 − x ⊥A Kk+1 (15)

Therefore, since the difference xk+1−x from the exact solution lies in the orthogonal
space in the Krylov subspace Kk+1 and A norm, update the solution update vector pk+1

to the next iterative solution xk+2 from the orthogonal space with A norm to this Kk+1

xk+2 should be closer to the exact solution.
As shown later, the previous search direction vector pk of pk+1 is in the subspace

Kk+1 trying to make it orthogonal. In other words,

pk ∈ Kk+1 (16)
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Therefore, in order for the search direction vector pk+1 to be orthogonal toKk+1 with
the A norm, it is necessary to orthogonalize to the minimum pk with A norm. In other
words,� �

(pk+1,pk)A = (pk+1,Apk) = 0 (17)� �
As shown later, the search direction chosen as above is orthogonal not only to pk but

also to the Kk+1 space by the A norm.
An expression that defines a search direction vector from the above residual and the

previous search direction vector,

pk+1 = rk+1 + βkpk (18)

, It means that a new search direction vector pk+1 can be obtained by projecting the
residual difference rk+1 to the orthogonal space with the Krylov subspace Kk+1 and A
norm.

From this equation, we can determine β.
Substituting this expression into the expression (pk+1,Apk) = 0 where the two search

directions are orthogonal, the parameter β becomes as follows.

β = −
(rk+1,Apk)
(pk,Apk)

(19)

Furthermore, using the relational expression (ri, r j) = 0 ( i , j ) of orthogo-
nality of residuals to be described later,

(rk+1,Apk) =

(
rk+1,−

1
αk

(rk+1 − rk)
)

= −
1
αk

(rk+1, rk+1) (20)

(pk,Apk) = (rk + βk−1pk−1,Apk) = (rk,Apk) =

(
rk,−

1
αk

(rk+1 − rk)
)

=
1
αk

(rk, rk) (21)

As a result, the coefficient βk can be further expressed as follows.

βk = −
(rk+1,Apk)
(pk,Apk)

= −
− 1
αk

(rk+1, rk+1)
1
αk

(rk, rk)
=

(rk+1, rk+1)
(rk, rk)

(22)

3.3 Determination of the coefficient α
The factor α is determined to minimize the potential φk+1 in the next step. The potential
φk+1 in the next step is
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φk+1 =
1
2

(xk+1,Axk+1) − (xk+1, f) (23)

=
1
2

((xk + αpk),A(xk + αpk)) − ((xk + αpk), f) (24)

=

{
1
2

(xk,Axk) − (xk, f)
}

+ α

{
1
2

(pk,Axk) +
1
2

(xk,Apk) − (pk, f)
}

(25)

+α2
{

1
2

(pk,Apk)
}

(26)

= φk + α

(
pk,

A + AT

2
xk − f

)
+ α2

{
1
2

(pk,Apk)
}

(27)

Since the matrix A was symmetric, it is A+AT

2 = A. Accordingly

φk+1 = φk + α(pk, rk) + α2
{

1
2

(pk,Apk)
}

(28)

When the potential φk+1 takes the minimum value, the potential φk+1 takes an extreme
value

∂φk+1

∂α
= 0 (29)

Therefore, when calculating this

(pk, rk) = α(pk,Apk) (30)

Therefore, the coefficient α becomes as follows.

α =
(pk, rk)

(pk,Apk)
(31)

Furthermore, using the relational expression (ri, r j) = 0 ( i , j ) of orthogo-
nality of residuals to be described later,

(pk, rk) = (rk − βk−1pk−1, rk) = (rk, rk) (32)

As a result, the coefficient αk can be further expressed as follows.

αk =
(pk, rk)

(pk,Apk)
=

(rk, rk)
(pk,Apk)

(33)

Using these, the algorithm of the CG method is as follows
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3.4 Algorithm (CG method)
1. Compute r0 = b − Ax0, p0 = r0

2. For k = 0, 1, . . . ,m, Do:

(a) αk =
(rk ,rk)

(pk ,Apk)

(b) xk+1 = xk + αkpk

(c) rk+1 = rk − αkApk

(d) βk =
(rk+1,rk+1)

(rk ,rk)

(e) pk+1 = rk+1 + βkpk

3. End Do

4 Krylov subspace and CG method

4.1 Proof: the CG method is a Krylov subspace method
The CG method is a type of Krylov subspace method. The Krylov subspace method is a
method for finding an approximate solution that is closest to the solution in the Krylov
subspace (8). Here we prove that the CG method is a Krylov subspace method.

We define subspaces K̄k, K̃k as:

K̄k = span{p0,p1,p2, · · · ,pk−1} (34)
K̃k = span{r0, r1, r2, · · · , rk−1} (35)

We first prove these subspace are identical to the Krylov subspace (8) using the
mathematical induction method.

• k = 1
It is obvious from r0 = p0.

• k > 1
Assume that it holds at k. In this case, it is checked whether or not it holds for k
+ 1.
pk = α(rk + βpk−1), pk ∈ K̄k+1, rk ∈ K̃k+1.
Also from the induction hypothesis pk−1 ∈ K̄k = K̃k K̄k+1 = K̃k+1 holds.
rk = rk−1 + αApk−1, rk ∈ K̃k+1. According to the induction hypothesis, since
rk−1 ∈ K̃k = Kk, pk−1 ∈ Kk, Apk−1 ∈ Kk + 1, K̃k+1 = Kk+1 is established
From the above we can say K̄k+1 = K̃k+1 = Kk+1.
It can be seen that k + 1 also holds when assuming that the proposition is estab-
lished in k.
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From the above, the proposition was proved by mathematical induction.
By the way, given the solution xk at the k-th iteration,

xk − x0 =

k−1∑
i=0

∆xi =

k−1∑
i=0

αipi. (36)

Because it is
xk − x0 ∈ Kk+1 = span{r0,Ar0,A2r0, · · · ,Akr0} (37)

Therefore, it can be seen that the CG method is a Krylov subspace method that searches
for solutions in Krylov subspace.

4.2 Proof: orthogonality of the search direction vectors and resid-
ual vectors

search direction vectors are A-orthogonal and search direction vectors and residual are
vector orthogonal

Prove using mathematical induction

• When k = 1

(r1,p0) = (r0 − αAp0,p0) = (r0,p0) −
(r0,p0)

(p0,Ap0)
(Ap0,p0) = 0 (38)

(Ap1,p0) = (A(r1 − βp0),p0) = (Ar1,p0) −
(r1,Ap0)
(p0,Ap0)

(Ap0,p0) (39)

= (r1,AT p0) − (r1,Ap0) = 0 (40)

Here we used the condition AT = A that A is symmetric item When k > 1
Assuming that it holds for 0 ≤ i < j ≤ k, in order to investigate whether 0 ≤ i <
j ≤ k + 1 also holds here, you can investigate whether it is true in j = k + 1. In
this case, considering the two cases of i = k and i ≤ k separately

– When i = k

(rk+1,pi) = (rk+1,pk) = (rk − αApk,pk) (41)

= (rk,pk) −
(rk,pk)

(pk,Apk)
(Apk,pk) = 0 (42)

(Apk+1,pi) = (Apk+1,pk) = (A(rk+1 − βpk),pk) (43)

= (Ark+1,pk) −
(rk+1,Apk)
(pk,Apk)

(Apk,pk) (44)

= (rk+1,AT pk) − (rk+1,Apk) = 0 (45)
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– When i < k

(rk+1,pi) = (rk − αApk,pi) (46)

= (rk,pi) −
(rk,pk)

(pk,Apk)
(Apk,pi) = 0 (47)

(Apk+1,pi) = (pk+1,Api) = (rk+1 − βpk,Api) (48)
= (rk+1,Api) − β(pk,Api) (49)

=
1
α

(rk+1, ri − ri+1) − β(pk,Api) (50)

=
1
α

(rk+1, (pi + βpi−1) − (pi+1 + βpi)) − β(pk,Api) = 0(51)

• So we can see that it also holds for 0 ≤ i < j ≤ k + 1 since it is true even when
j = k + 1

The proposition is proved by using the mathematical induction method from the
above

4.3 Proof: all the residual vectors are orthogonal
Prove by mathematical induction

• When k = 1

(r0, r1) = (p0, r1) = 0 (52)

• When k > 1 Assuming that it holds for 0 ≤ i < j ≤ k, in order to investigate
whether 0 ≤ i < j ≤ k + 1 also holds here, you can check whether it is true in
j = k + 1.

(ri, rk+1) = (ri, rk − αApk) = (ri, rk) − α(Apk, ri) (53)
= (ri, rk) − α(Apk,pi + βpi−1) = 0 (54)

Therefore, it can be seen that 0 ≤ i < j ≤ k + 1 also holds since it holds even in
j = k + 1

The proposition is proved by using the mathematical induction method from the
above

9



4.4 CG method converge in finite iterations (only theoretically!)
We shows that the CG method always converges with iteration of n solution from the
condition that the residual r is orthogonal.

Here, it is found that the column ri of the residual vector is a linear independent
vector orthogonal to each other. Since the maximum value of the number of linearly
independent vectors is the number of dimensions n of the vector, it can be seen that the
number of columns of the residual vector does not become larger than the dimension
number n of the vector.� �

CG method always converges with the number of iterations of vector dimen-
sion n or less� �

However, this is only in theory where there is no error in the floating point num-
ber computation. The CG method is strongly influenced by the rounding error, so on
the calculator the CG method never converges per n iterations. Using the Chebyshev
inequality, more accurate convergence conditions can be obtained.
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