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1 Introduction
The LU decomposition is often used to solve a linear system. In this document, we
take a look at how the LU decomposition is computed. LU factorization is a method
of expressing a coefficient matrix by the product of a lower triangular matrix and an
upper triangular matrix. By using the fact that there are only two triangular matrix
after the LU decomposition, linear system can be solved very efficiently using forward
/ backward substitution after the decomposition. Here, we briefly describe how the
LU decomposition works and how it is implemented. We first explain the block LU
decomposition. The LU decomposition is obtained by repeating the special case of
block LU decomposition many times.

2 Block LU Decomposition

2.1 Block LU decomposition
Consider the following square matrix[

A B
C E

]
, (1)

where A,B,C and E are also matrices (we use E instead of D here to avoid confusion
with a diagonal matrix). It is easy to check that this matrix can be written as the multi-
plication of two matrices[

A B
C E

]
=

[
I 0
CA−1 I

] [
A B
0 E − CA−1B

]
. (2)

The decomposition results in a block lower triangle matrix and a block upper triangle
matrix. Thus, this decomposition is called block LU decomposition. To be more precise,
there are several types of block LU decomposition and this decomposition is a special
case where a diagonal block of the lower block triangle matrix becomes a unit matrix.
The lower right entry of the right matrix is called Shur complement and sometimes write
S.

E − CA−1B = S (3)
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2.1.1 Inverse matrix of block lower triangular matrix

You can easily check the following equation by hand:[
I 0
CA−1 I

] [
I 0
−CA−1 I

]
=

[
I 0
0 I

]
(4)

This mean that the inverse of the block lower triangle matrix is:[
I 0
CA−1 I

]−1

=

[
I 0
−CA−1 I

]
(5)

2.1.2 Solving a linear system using the block LU decomposition

Consider the following linear system.[
A B
C E

] {
xA

xB

}
=

{
yA

yB

}
(6)

Let use have the block LU decomposition on the coefficient matrix.[
I 0
CA−1 I

] [
A B
0 S

] {
xA

xB

}
=

{
yA

yB

}
(7)

where I wrote Shur Complement as S.
Multiplying from the left to the inverse of the lower triangular matrix,[

A B
0 S

] {
xA

xB

}
=

[
I 0
−CA−1 I

] {
yA

yB

}
(8)

Therefore, the solution is obtained as follows

xB = S−1{−CAyA + yB} (9)

xA = A−1{yA − BxB} (10)

The opposite is A and S. For situations in which the inverse of A can be easily
obtained (for example, A is a diagonal matrix), the solution in such block decomposition
can reduce the order of the solved matrix and is efficient.
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2.1.3 Eigenvalues of block triangular matrix

Let’s find the eigenvalues of the next block upper triangular matrix which is the result
of the above block LU decomposition.

[
A B
0 S

]
φ = λφ (11)

The characteristic equation is as follows

det
[

A − λI B
0 S − λI

]
= 0 (12)

⇔ det(A − λI) det(S − λI) = 0 (13)

The eigenvalues of the block triangular matrix are equal to the eigenvalues of
the diagonal block matrices. Therefore, the eigenvalue λ is either one of the eigenval-
ues of A or one of eigenvalues of S. Also, it can be seen that the eigenvalue of the block
triangular matrix whose diagonal matrix is an identity matrix is 1. Shur Complement S
is very important as it retains the properties of the original matrix.

2.2 Block LDU decomposition
Let us disassemble the block upper triangular matrix of LU decomposition as follows.

[
A B
0 E − CA−1B

]
=

[
A 0
0 E − CA−1B

] [
I A−1B
0 I

]
(14)

Using this, it can be written symmetrically as follows.

[
A B
C E

]
=

[
I 0
CA−1 I

] [
A 0
0 S

] [
I A−1B
0 I

]
(15)

2.3 Symmetric LU decomposition for a positive definite matrix
Consider the case where the original matrix is a positive definite symmetric matrix. In
other words,

AT = A (16)

C = BT (17)
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ET = E (18)

Since the eigenvalues of the original matrix are equal to eigenvalues of A and S,
the fact that the original matrix is positive definite means that both A and S are positive
definite. At this time, it is possible to decompose by the real matrix LA, LS as follows.
A = LALT

A, S = LS LT
S Using this, the diagonal block matrix of LDU decomposition can

be decomposed as follows.

[
A 0
0 S

]
=

[
LA 0
0 LS

] [
LT

A 0
0 LT

S

]
(19)

By assigning this to above,

[
A B
BT D

]
=

[
I 0
BT A−1 I

] [
LA 0
0 LS

] [
LT

A 0
0 LT

S

] [
I A−1B
0 I

]
(20)

=

[
LA 0
BT L−T

A LS

] [
LT

A L−T
A B

0 LT
S

]
(21)

=

[
LA 0
BT L−T

A LS

] [
LA 0
BT L−T

A LS

]T

(22)

Therefore, the original matrix could be expressed in the form of a lower triangular
matrix and its transposition.

3 LU decomposition
In the previous section, we explained the block LU decomposition. In this section, we
explain LU decomposition as an extension of the block LU decomposition.

In order to explain LU decomposition, we first explain LDU decomposition. LDU
decomposition is easier than the LU decomposition because he operation is symmetry.
Then, LU decomposition can be obtained by applying D to U after LDU decomposition
or by applying D to L. Since LDU decomposition can be seen as repetitively applying
the special case of block LDU decomposition, we explain it using it here.

3.1 LDU decomposition
LDU decomposition is to divide the matrix into products of lower triangular matrix,
diagonal matrix, upper triangular matrix. In the block LDU decomposition, the original
matrix is largely divided into blocks, and the entire decomposition is performed by cal-
culation for each block. Consider block LDU decomposition that divides into blocks of
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size 1 and n-1 blocks instead of dividing blocks. By repeating this, LDU decomposition
is obtained.

S0 =

[
a0 bT

0
c0 E0

]
=

[
1 0
1
a0

c0 I

] [
a0 0
0 E0 −

1
ac0bT

0

] [
1 1

a0
bT

0
0 I

]
= L1D1U1 (23)

Now,

D1 =

[
a0 0
0 S1

]
, S1 = E0 −

1
a0

c0b0
T (24)

Met. Suppose S1 = E0 −
1
a0

c0b0
T , which is the (n - 1) -th order square matrix at the

bottom right, is LDU decomposed as follows.

S1 =

[
a1 bT

1
c1 E1

]
=

[
1 0
1
a1

c1 I

] [
a1 0
0 E1 −

1
a1

c1bT
1

] [
1 1

a1
bT

1
0 I

]
= L̄2D̄2Ū2 (25)

Using this, the original matrix D1 can be written as

D1 =

[
a0 0
0 L̄2D̄2Ū2

]
=

[
1 0
0 L̄2

] [
a0 0
0 D̄2

] [
1 0
0 Ū2

]
= L̃2D2Ũ2 (26)

Substituting this, the original matrix S0 can be written as

S0 = (L̃1L̃2)D2(Ũ2Ũ1) (27)

Let’s calculate concretely about L2 = L̃1L̃2.

L2 = L̃1L̃2 =

[
1 0
1
a0

c0 I

] [
1 0
0 L̄2

]
=

[
1 0
1
a0

c0 L̄2

]
=


1 0
1
a0

c0

[
1 0
1
a1

c1 I

]  (28)

It can be seen that this is a lower triangular matrix filled below the diagonal of the
first two columns of the identity matrix. Likewise, concretely writing about D2 and U2

as follows,

D2 =


a0 0 0
0 a1 0
0 0 E1 −

1
a1

c1bT
1

 (29)
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U2 = Ũ2Ũ1 =


1 1

a0
bT

0

0
[

1 1
a1

bT
1

0 I

]  (30)

D2 is a diagonal block matrix, the first two are diagonal matrices, and the rest are
block matrices. For U2, it turns out that it is an upper triangular matrix filled to the right
from the diagonal of the two previous rows of the identity matrix.

3.1.1 Algorithm

Repeating these operations n times, which is the order of the original matrix, Dn be-
comes a diagonal matrix. When repeating n times, LDU decomposition is obtained.
When the original matrix is S 0, the algorithm for obtaining these in order is as follows

1. Let i = 0

2. Si is a square matrix of (n - i). Let ai be the component of the first row and first
column of Si. In the first row of Si, denote the components of the second and sub-
sequent columns as bT

i . Likewise, ci is expressed by vectorizing the components
of the second and subsequent rows in one column of S i. bi, ci is the (n− i−1) next
vector. Also, (n − i − 1) consisting of the second and subsequent rows of S i and
the second and subsequent rows shall be Ei as the following square matrix. Let’s
be S i+1 = Ei −

1
ai

cibT
i .

3. Assign ai to the i-th diagonal of D. Arrange 1
ai

ci below the diagonal of L in the
i-th column. Arrange 1

ai
bT

i to the right from the diagonal of the U i-th line.

4. If i < n, add 1 to i and go back to 2.

This is shown in the figure below. Beginning with the original matrix S0, we proceed
sequentially to the lower right.

3.1.2 Algorithm in detail

Let’s write the above algorithm for each component. As the original matrix A, the
components of the LDU decomposed matrix are as follows. However, suppose that you
write i j components of A, L,D,U in a lower-case letter as ai j, lil, di j, ui j respectively.

di j =

{
aii −

∑i−1
k=0 likukidkk (i = j)

0 (i , j)
(i = 0, 1, . . . , n − 1) (31)
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Figure 1: LDU Factorization Algorithm

li j =


(
ai j −

∑ j−1
k=0 likuk jdkk

)
/d j j (i > j)

1 (i = j)
0 (i < j)

(i, j = 0, 1, . . . , n − 1) (32)

ui j =


(
ai j −

∑i−1
k=0 likuk jdkk

)
/dii (i < j)

1 (i = j)
0 (i > j)

(i, j = 0, 1, . . . , n − 1) (33)

3.2 LU decomposition
And the lower triangular matrix and the upper triangular matrix. This is called LU
factorization. When A is asymmetric, it is called the Craut’s decomposition. In the case
of symmetry it is called the Cholesky decomposition.

3.2.1 LU decomposition part 1 (decomposition with 1 diagonal of L)

Let A = LD̄Ū be the matrix decomposed using LDU decomposition in the previous
section.

U = D̄Ū (34)

Then, since U is an upper triangular matrix,

A = LU (35)
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Let’s write the above algorithm for each component with reference to LDU decom-
position. As the original matrix A = LD̄Ū, the components of the LDU decomposed
matrix are as follows. The following relational expression obtained for each component
from U = D̄Ū d̄ii = uii, ui j = ūi jd̄i j Then, the following is obtained.

li j =


(
ai j −

∑ j−1
k=0 likuk j

)
/u j j (i > j)

1 (i = j)
0 (i < j)

(i, j = 0, 1, . . . , n − 1) (36)

ui j =

{
ai j −

∑i−1
k=0 likuk j (i ≤ j)

0 (i > j)
(i, j = 0, 1, . . . , n − 1) (37)

3.2.2 LU decomposition part 2 (decomposition with one diagonal of U)

Let A = L̄D̄U be the matrix decomposed using LDU decomposition in the previous
section.

L = L̄D̄ (38)

Then, since U is an upper triangular matrix,

A = LU (39)

Let’s write the above algorithm for each component with reference to LDU decom-
position. As the original matrix A = L̄D̄U, the components of the LDU decomposed
matrix are as follows. The following relational expression obtained for each component
from L = L̄D̄ d̄ii = uii, ui j = ūi jd̄i j Then, the following is obtained.

li j =

{
ai j −

∑ j−1
k=0 likuk j (i ≥ j)

0 (i < j)
(i, j = 0, 1, . . . , n − 1) (40)

ui j =


(
ai j −

∑i−1
k=0 likuk j

)
/lii (i < j)

1 (i = j)
0 (i > j)

(i, j = 0, 1, . . . , n − 1) (41)

This is often used as a data structure of a matrix when CRS data format is used.
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3.3 Solving a linear system
Let’s solve a linear system as follows.

Ax = y (42)

Here, if the coefficient matrix A is LU decomposed as

A = LU (43)

To solve this, we introduce the vector z as follows, first solve for the lower triangular
matrix, then solve for the upper triangular matrix in order. When solving for the lower
triangular matrix and the upper triangular matrix, solutions are obtained by forward
substitution and backward substitution as described later.

z = L−1y (44)

x = U−1z (45)

3.3.1 How to find z by solving Lz = y

Can be done using forward substitution

Lz = y (46)
l00z0 = y0 ⇔ z0 = y0/l00 (47)

l10z0 + l11z1 = y1 ⇔ z1 = {y1 − l10z0}/l11 (48)
l20z0 + l21z1 + l22z2 = y2 ⇔ z2 = {y2 − l20z0 − l21z1}/l22 (49)

k∑
i=0

lkizi = yk ⇔ zk = {yk −

k−1∑
i=0

lkizi}/lkk (k = 0, 1, . . . , n − 1)(50)

3.3.2 How to obtain x by solving Ux = z

Can be obtained using backward elimination.

Ux = z (51)

From the last element of x, we will seek to the first element in order
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u(n−1,n−1)xn−1 = zn−1

⇔ xn−1 = zn−1/u(n−1,n−1) (52)
u(n−2,n−2)xn−2 + u(n−2,n−1)xn−1 = zn−2

⇔ xn−2 = {zn−2 − u(n−2,n−1)xn−1}/u(n−2,n−2) (53)
u(n−3,n−3)xn−3 + u(n−3,n−2)xn−2 + u(n−3,n−1)xn−1 = zn−3

⇔ xn−3 = {zn−3 − u(n−3,n−1)xn−1 − u(n−3,n−2)xn−2}/u(n−3,n−3) (54)
k∑

i=1

u(n−k,n−i)xn−i = zn−k

⇔ xn−k = {

k∑
i=1

zn−k − u(n−k,n−i)xn−k}/u(n−k,n−k) (k = 1, 2, . . . , n) (55)

3.4 Speed up compression display and calculation
In addition to the original matrix A before decomposition it is inefficient to reserve
separate memory to express L and U. L is a lower triangular matrix, the upper half is 0,
U is the lower triangular matrix, and the lower half is 0. By transforming the original
matrix so that the upper half is U and the lower half is L, you can display them in one
matrix. Let us now consider the case where LU factorization is performed so that the
diagonal of U is 1. That is, A =

(
L̄D̄

)
U = LU transforms A at this time so that it

becomes a matrix A′ like the following. However, let izz components of A′, L, U be
a′i j, li j, ui j respectively.

a′i j =


li j (i > j)
1/lii (i = j)
ui j (i < j)

(56)

Notice that the diagonal elements of A′ are the inverse of the diagonal elements of L.
This is because the diagonal elements of A′ are used for LU decomposition and diagonal
elements for forward substitution, but they are always used as opposite values, so you
can expect high speed by storing the opposite value. Now, LU decomposition such that
the diagonal of U is 1 is suitable for line by line decomposition. This can be said to
be the most suitable decomposition method for row-wise data structures like CRS. The
algorithm for finding such a matrix A′ is as follows.

3.4.1 LU factorization (LU decomposition with U diagonal 1, compressed display
with diagonal reciprocal)

1. f or i = 0, . . . , n − 1
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(a) f or j = 0, . . . , n − 1

• a′i j = ai j −
∑ j−1

k=0 a′ika
′
k j

(b) end f or

(c) a′ii = 1/a′ii (Calculate and store the reciprocal of diagonal elements of lower
triangular matrix)

(d) f or j = i + 1, . . . , n − 1

• a′i j = a′i j × a′ii (Multiply diagonal elements of lower triangular matrix to
create upper triangular matrix)

(e) end f or

2. end f or

Now, the forward elimination and the backward substitution for the deformed matrix
are as follows.

3.4.2 Forward substitution (LU decomposition with U diagonal 1, compressed
display with diagonal reciprocal)

zk = {yk −

k−1∑
i=0

a′kizi}a′kk (k = 0, 1, . . . , n − 1) (57)

3.4.3 Back substitution (LU decomposition with U diagonal 1, compressed dis-
play with diagonal reciprocal)

xn−k =

k∑
i=1

zn−k − a′(n−k,n−i)xn−i (k = 1, 2, . . . , n) (58)

3.4.4 LU decomposition algorithm diagram (compressed display)

FIG. 2 shows an LU decomposition algorithm when compressed display is performed.
It does not depend on the type of LU decomposition or the decomposition procedure,
and it is roughly as shown in the following figure. In other words, if there is an element
ai j to decompose, refer to all the elements of textbf decomposed of ak j and left aik so
that the diagonal elements akk and ai j can make a rectangle.
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Figure 2: illustragtion of LU factorization where L and U are put in the same matrix.
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