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1 Time Derivative

1.1 Object Moving In The Space

Let’s say an object is moving in the space. We consider a point that move together with
that object. Imagine a potato that has a small cross sign cut by a knife. The center of the
cross sign move together with the potato. We call that kind of object attached point as
material point X. Please not that sometime the material point is not specifically on an
object with volume. In that case, it is just spatial point that moves around.

*I initially wrote this document when I was a MSc student. I tried to keep what I learned in my mind.
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The coordinate of material point changes over the time, so we denote the coordinate
as X(7) . It is a bit confusing but please not that we use X as a label of a material point
while X(7) means the coordinate.

Since the physical object does not suddenly disappear or jump (we do not consider
quantum mechanical here) the X is a continuous function. We denote its time derivative
as v:

IX(t)
o Y M

In the meanwhile, a point that does not change its location we call it as spacial point
and denote it as X. The position of the spacial point is constant and time independent.
We also denote the coordinate of the point as x

position X A

dx = vdt <

Figure 1: Spatial-time visualization of the trajectory of a material point X

1.2 Material Time Derivative and Spatial Time Derivative

We denote A as an arbitrary field that can be either scalar a, vector d or tensor A. The
word “field” means that some value A is defined at some continuous region in the space



(and sometimes in the time). For example, in the room, there is a temperature field as
you can find out the temperature at any point on the room. The corner of the room
might be colder than in the middle. If you put AC on, for example, the temperature
dynamically changes.

The field is defined at the point and at the time. Hence, the value of field at time ¢
and the position X can be written like a multivariate function A(¢, x). Let’s assume that
this function is continuous. There is no abrupt jumping of the value ‘A when I change
the position or time. In the math terminology, this can be said that (A is differencible.

The total derivative can be written as follows:

OA OA
= — —| dx; 2
dA py xdt+ x tdx, (2)
= _‘9;;{ dt + (A®V,)-dx, (3)

here aa—f" . describe how value A at the space-fixed position x change over time. This is

called spatial time derivative.

spatial time derivative

o7
ot
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X

1.3 Material Time Derivative

Here we try to obtain change of dA at the material point X over infinitesimal time dr.
Here, X can be seen as a label on the material point. The rate of the change in A on the
material point X is called material time derivative and often denoted as as:

material time derivative

OA
- 5
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We plug this in the Equation (3).
0 0
dﬂ:—ﬂ dt:—ﬂ dt + (A®V,) - vdt (6)
ot Ix ot |x

Hence we obtain following relationship between material time derivative and spatial
time derivative:



relationship between material time derivative and spatial time derivative
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dt + —dz;
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position x A %
ot

X

dx = vdt <

dt time

Figure 2: Spatial time derivative. The axis vertical to the screen denote the value of A.

1.4 Eular’s Expansion Formula

J = detF (8)



dv = Jdv ©)

= ([ dxi dxp dxs ) (10)
= ([ F-aX; F-dX, F-dX; ) (11)
= | F-dX, F-dX, F-dX; | (12)
+| F-dX, F-dX, F-dX; | (13)
+| F-dX, F-dX, F-dX; | (14)
= | F-F")-F-dX;, F-dX, F-dX; | (15)
+| F-dX, (F-F")-F-dX, F-dX; | (16)
+| F-dX, F-dX, (F-F')-F-dX; | (17)
= w(F'-F)[ F-dX, F-dX, F-dX; | (18)
= (wL)detF)[ dX; dXo dX; | (19)
= (V-v)JdV (20)

Hence the rate of change of the determinant of Jacobian can be written as:

Euler’s expansion formula

J=(,-v)J (21)

This is called Eular’s expansion formula.

1.5 The Reynolds Transport Theorem

We consider arbitrary region inside an object. We assume that the region change its
change following the velocity of material points. Namely, all the material point inside
this region kept contained inside region over time. Such region is called material control
volume. The Reynolds transport theory describe how the physical quantity (A inside
such volume change over time.

Reynolds transport theorem

OA
dv = —_—
X\[\:ﬂ ’ \f\: ot

% dv + fnx (V@ A)ds (22)
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_ f A+ Ajav (24)
\% 8t X
= f OA J+ ANV, -v)JdV (25)
\% 8t X
= [ L aw. vy (26)
, Ot Ix
o
_ a_jt‘ + V- (Ve ® A) + AV, - V)dv (27)
o
= f{%‘ + V- (Ve A)dv (28)
d
= fa_jt( dv+fnx-(v®&7l)ds, (29)

where V is the region in the initial configuration.

In the first line (23)), the differential is computed over the time changing volume
v and we need to care about the rate of boundary change. We make this tractable by
transforming the integral domain into the reference volume V, which does not change
over time. Then, we again change the integration into the current volume v.

Note that we used Euler’s expansion formula (Equation 21]) and following formula
about volume change from current and reference configuration:

dv = [ dx; dx, dxz ] (30)
= [ F-dX; F-dX, F-dX; ] 3D
= (detF)[ dX; dX, dX; ] (32)
= Jdv (33)

Using the Reynolds transport theorem, we can derive many useful equations such as
the continuity equation, momentum equation, and energy equation.

2 Differential form of Conservation Law

2.1 Equation of Continuity

An objects’ mass m is given using its shape v and density p as:

m= f pdv. (34)
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The principle of conservation of mass state that an objects mass m is constant over
time and unchanged with the deformation:

om
ot

0

X:8t

Xfpdv =0 35

We plug-in this principle of conservation of mass into the Reynolds transport theo-

rem by changing A to p as:
dp
dv= | —
X f;;o ! f\: ot

[
, Ot

Since this holds in the arbitrary region v, we have

+p(Vy - V)dv (36)

X

9
ot

Hence,

+po(Vy-v)dv=0 (37)
X

dp

ot

+p(V, V) = 0. (38)
X

This is the Lagrangian representation of continuity equation.

continuity equation (Lagrangian form)

—| +p(V,-v)=0 (39)
X

Further more we substitute A in Reynolds transport theory to p to obtain following

equation.
0 op
el dv= | =
ot vap ’ f ot

Since this holds in arbitrary region v, we have

+ V- (ov)dv (40)

X

P +V-(vp) =0. (41)

X

This is the Eularian form of continuity equation.

continuity equation (Eularian form)

—| +V-(vp)=0 (42)




2.2 Special Case of Reynolds Transport Theorem where Transported
Quantity is Proportional to the Density

Let’s consider a special case of transportation where the transported quantity is propor-
tional to the density, such as momentum transportation. In such a case, we can put the
transport theorem in simpler form. Let’s say the transported quotient can be represented

as pA.
0
fpﬂdv — fpﬂJdV (43)
X Jy otlx Jv

[E
v ot
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J +pAJdV (44)
X

f P ar+p a—ﬂ‘ J+ pAN, -v)JdV 45)
% 8t X at X

~ dp 6ﬂ|

= fv(at,ﬁp(vx MA+p 5| dv (46)

=0

The Lagrangian description of continuity equation makes the first term of the equa-
tion zero. Finally, we could include material time derivative inside integral:

special case of Reynolds transport theorem

dv (47)

OA
dv = —
x[pﬂ ’ Ip ot

Let’s investigate how the principle of mass conservation can be described using the
reference configuration. We denote the density in the reference configuration as py

pdv = podV (48)

Additionally the using the dv = JdV, we have

-y (49)
P

2.3 Cauchy’s First Law of Motion

The Euler’s first law of motion (conservation of momentum) has:

fpvdv = fpgdv+ ftds. (50)
X Jv v s
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We set A = v in the the special case of Reynolds transportation theorem (Equa-

tion (@7)) to obtain
O Lot [0
orlx J. PV T P o

We putt = T? - n = n - T in the left hand side of Equation (50) and apply Gauss’s
divergence theorem to obtain

fpgdv+ ftds = fpgdv+ fn-Tds (52)

f og+V, - Tdv. (53)

dv. (G1))
X

We put Equation (51)) and (33) into the Euler’s first law of motion (Equation (50))

to obtain following:
f ov
vp ot

Since this equation is true of arbitrary region v, we have following Cauchy’s first law of
motion:

dv = fpg + V,-Tdv (54)
X v

Cauchy’s first law of motion (Lagrangian form)

=pg+ Ve T (55)
X

We change the first term of the left hand side of Equation (53)) from material time
derivative to spatial time derivative to obtain following Cauchy’s first law of motion in
Eulerian form:

Cauchy’s first law of motion (Eulerian form)

paa—: +p(v®V,) - v=pg+V,-T (56)

2.4 Cauchy’s Second Law of Motion

According to the Euler’s second law of motion we have conservation of angular mo-
mentum

Euler’s second law of motion

0
fxx,ovdv=fx><;ogdv+fx><tds (57)
X Jy v s

ot




For the left hand side of this Euler’s first law of motion (Equation (57))), we put the
special case of Reynolds transport theorem (Equation (d7)) as A = x X v:

0
Ip 6_t‘x (x X V)dv

)dv (58)

|
=
|
X
<
+
W
X
|

dv (59)

I
—
w4
X

S
22

Note that we used relationship % Xv=vxv=0.
The second term of the left-hand side of Euler’s second law of motion (Equa-
tion (57)) can be further transformed as:

fx Xtds = fx x (T" - m)ds (60)
= f(xiei) X (T;;e;n;)ds (61)

= f €k XiTjnerds (62)

= € fx,-T,jnldsek (63)

€ijk fﬁ l(xlle)dvek (64)

€iji f(éille + xi%)dvek (65)

- f (e,]kT”ek+(xl )X ( aTl,] ))dv (66)

= f(eijkTijek +x X divT)dv (67)

Let’s put these equations into the Euler’s second law of motion (Equation (57)):

Jx<r
o o0

Note that we applied Cauchy’s first law of motion (Equation (53)) to the first term of
the left hand side. Now we have following equation:

dv = fx X pgdv + f(Ekaszek +x X divT)dv (68)

—pg—divT)dv = fe,-jkT,-jekdv (69)

14

=0

fe,-jkTijekdv =0 (70)
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Because this hods in the arbitraray volume it should be
eijkTij =0. (71)

In order to this holds, it requires
Ti j = le' (72)

Since the Cauchy stress is symmetric, the number of independent component is six. The
tensor notation of this is following Cauchy’s second law of motion.

Cauchy’s second law of motion

™ =T (73)
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