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1 Constituent formula of fluid
From the principle (principle of local action) on the composition formula, The stress at
the point X corresponds to the region near X From the past of the collection of substance
stores to the current time t It is determined by the history of exercise. In particular, if
a substance is a simple material whose stress T is determined depending only on the
history of the deformation gradient F, the following expression holds.

T = F ∞s=0(F(t − s)) (1)

In the composition formula of a simple substance,

F ∞s=0(F(t − s)) = F ∞s=0(F(t − s) · P) (2)

If there is some second-order tensor P to do, This material is said to be symmetric
with respect to transformation P. P Represents the transformation of the object prior
to the deformation F, It is called symmetric transformation. It seems like liquid crystal
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has anisotropy in fluid Generally, unless the density of the fluid changes unless it is a
special case Because the mechanical properties should also be the same, P

det P = 1 (3)

When it is an arbitrary transformation that satisfies the condition, the substance is
defined as a (simple) fluid be able to. Conversion satisfying the above equation It is
called unimodular transformation. Since the arbitrary rotation satisfies the above equa-
tion, it is understood that the fluid is isotropic. In the above expression P

P = J det F−1(t) (4)

, The composition formula of the fluid is

T = F ∞s=0
(
F(t − s) · JF−1(t)

)
(5)

It is necessary that one is established. At the same time, if the above equation holds,
For any det P , 0 conversion P Substituting F̃(t− s) = F(t− s) ·P for the above equation

T̃ = F ∞s=0
(
F̃(t − s) · J ˜F−1(t)

)
(6)

= F ∞s=0
(
F(t − s) · P · J(F(t) · P)−1 (7)

= F ∞s=0
(
F(t − s) · P · JP−1 · F−1(t)

)
(8)

= F ∞s=0
(
F(t − s) · JF−1(t)

)
(9)

= T (10)

Since it can be expressed in a form independent of the conversion P, It is fully
satisfied as a constituent formula of fluid. From the above, it is necessary and sufficient
condition to be able to write constituent formula of (simple) fluid as follows.

T = F ∞s=0
(
F(t − s) · JF−1(t)

)
(11)

Next, the inside of the parenthesis on the right side of the above expression

F(t − s) · JF−1(t) = F(t) · JF−1(t) (12)

+
∂F(t)
∂t
· JF−1(t)ds (13)

+
1
2!
∂2F(t)
∂2t

· JF−1(t)ds2 (14)

+ · · · (15)

= J + JLds + J
1
2!

L(2)ds2 + · · · (16)
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You can expand Taylor like. However, L is the velocity gradient tensor, L(n) Is the
velocity gradient tensor on the n th floor. If up to 2 terms on the right side of the above
equation If the residual term becomes small enough, the composition formula can be
written as follows.

T = f
(
J, JL

)
= f
(
J,L
)

(17)

Further, the volume change rate from the reference arrangement, that is Jacobian and
density, Since Jacobian is associated from the above equation, instead of the density of
the current time It can be a function. In other words,

T = f
(
ρ,L
)

(18)

Become
Here, when the velocity of the fluid is uniform, that is, the velocity gradient is 0

Consider stress T̃ of When the velocity gradient is 0, it is L = 0, so from the above
equation

T̃ = f(ρ) (19)

. Also, if Q is an arbitrary symmetric tensor from the principle of material objectiv-
ity,

T̃∗ = QT̃QT = f(ρ∗) = f(ρ) = T̃ (20)

For any rotation by symmetric tensor Q The invariant tensor is limited to a constant
multiple of the unit tensor I. Therefore, the stress T̃ in this case is

T̃ = −p(ρ)I (21)

. The stress T̃ when the velocity of the fluid is uniform Hydrostatic stress, p hydro-
static pressure, . Also, as in the above formula, the pressure is determined only from
the density The fluid is called Barotoropic fluid or forward pressure fluid. Also, when
a fluid whose pressure depends on temperature or the like other than density It is called
baroclinic fluid. Also, as with incompressible fluids, pressure In the case where it acts
as a restraining force to satisfy incompressibility, this pressure is referred to as ambient
hydrostatic pressure.

From the stress-determining function f this hydrostatic stress T̃ If you define a new
function without f,

T = −p(ρ)I + f(ρ,L) (22)
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. However, f has a uniform fluid velocity From the stress T the stress when the
velocity gradient is 0 Since it is the excluded one, when the velocity gradient is 0, f = 0
Must be satisfied. In other words,

f(ρ, 0) = 0 (23)

. And if f = 0 always holds,

T = −p(ρ)I (24)

, This constituent formula represents an ideal fluid. Although the basic physical
properties of a fluid are that it can not hold shear stress when in parallel, The fluid
represented by such a constituent formula It is ideal in the sense that it can preserve this
property during exercise. The absence of shear stress in the ideal fluid means that, In
simple shear motion, adjacent layers do not have resistance It means that you can slide.
In a viscous fluid, this type of relative motion has frictional resistance Since shear force
is generated, the ideal fluid is inviscid fluid, It can be safely said.

In the case of non-ideal fluid it is f , 0, Since f represents the displacement stress
from the ideal fluid f is called overstress. Generally, the overstress represents stress due
to viscosity.

The symmetric component of the velocity gradient tensor L is D, Assuming that the
antisymmetric component is W,

L = D + W (25)

. D is the deformation rate tensor W is called a spin tensor. W represents rigid body
rotation and is not related to stress That is, It is considered that the composition formula
can be represented only by the deformation rate tensor D. Actually, from the principle
of material objectivity, The function f is an arbitrary orthogonal tensor Q And against
Q̇ which becomes an arbitrary antisymmetric tensor by its time differentiation

T∗ = QTQT (26)
= −p(ρ)I + Qf

(
ρ,L
)
QT (27)

= −p(ρ)I + f
(
ρ,L∗
)

(28)
= −p(ρ)I + f

(
ρ,QLQT + Q̇QT ) (29)

Must be satisfied. Since Q and Q̇ were arbitrary, Here Q = I, Q̇ to L Minus the
antisymmetric component of With Q̇ = −(L)a = −W = −1

2 (L − LT )

f
(
ρ,L
)

= f
(
ρ,L − (L)a

)
= f
(
ρ, (L)s

)
= f
(
ρ,D
)

(30)
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Therefore,

T = −p(ρ)I + f
(
ρ,D
)

(31)

, And the excessive stress f is the strain rate tensor D It becomes a function of
The antisymmetric component W of the velocity gradient tensor L is Although it

came out, in general the antisymmetric tensor B An axial vector

ω = −
1
2
εi jkBi jek (32)

For any vector a B · a = ω × a . Against the spin tensor W The axial vector ω

ω = −
1
2
εi jkW jkei =

1
2
εi jk

∂vk

∂x j
ei =

1
2
∇x × v (33)

, And represents an angular velocity vector in which the fluid rotates rigidly. From
the above equation, the angular velocity vector ω is Defined in Ω = ∇x × v It is half the
vorticity vector.

2 incompressible expression
Assuming incompressible conditions for the fluid, the mass density of the material point
X is Since it is constant regardless of time, the following condition is satisfied.

∂ρ

∂t

∣∣∣∣∣
X

= 0 (34)

Therefore, if this is adapted to a continuous equation, for Lagrange display, Eular
display The incompressible continuity formula is as follows.

∇x · v = 0 (35)

∂ρ

∂t

∣∣∣∣∣
x

+ v · (∇xρ) = 0 (36)

Furthermore, in the case of a single fluid, or when the density of the fluid is spatially
constant
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ρ = Const (37)

, The incompressibility condition is always satisfied, Continuous expressions have
meaning only in the Lagrange display format. That is, the Eular indication of continuous
equations is always satisfied. From the above, the incompressibility equation of constant
density fluid is as follows.

∇x · v = 0 (38)

incompressible expression

∇x · v = 0 (39)

3 Fluid pressure
Constraints may exist in deformation of a substance. Such restrictions represented by
incompressibility conditions etc. It is called internal constraint. If there is an internal
bond in the object The principle (principle of stress determination) on composition
formula needs to be transformed as follows.

T = F ∞s=0(F(t − s)) + T (40)

This stress T is irrelevant to internal work, From the movement of material points,
that is, the history of F It is a stress that can not be decided This is called interminate
stress. Since nondeterministic stress does not work

T : D = tr(T · D) = 0 (41)

Is satisfied. A typical internal constraint is a scalar value tensor function

γ(F) = 0 (42)

As shown in FIG. For example, as a representative example thereof, an uncom-
pressed constraint condition
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γ(F) = det F − 1 = J − 1 = 0 (43)

.
Since internal work must also satisfy the principle of substance objectivity,

γ∗(F) = γ(F) = γ(Q · F) (44)

Must be satisfied. Here, if you say Q = RT

γ(F) = γ(RT · R · U) = γ(U) (45)

γ is the right stretch tensor U only It is necessary to be a function. While the right
stretch tensor is invariant to the rotation of the reference frame In other words, because
it is U∗ = U

γ∗(U) = γ(U∗) (46)

It seems that it satisfies objectivity sufficiently. Therefore, constraint condition γ is
only right stretch tensor U It must be a function of.

Here, what non-deterministic stress is imposed on incompressible restraint condi-
tions It is examined whether it occurs. γ was 0 and was a constant Time-differentiated
λ should also be zero. Accordingly

γ̇ = (det F − 1)˙ = J̇ = JtrD = trD = 0 (47)

Here, we used J = 1 from the constraint condition. From the above equation

trD = I : D = tr(I · D) = 0 (48)

. Therefore, when incompressible constraints are imposed from the above equation
The stress represented by a constant multiple of the unit tensor is I understand that I do
not work. Thus, the unknown stress T is calculated using the unknown number p

T = −pI (49)

Can be expressed as follows. p introduced here It is clearly indeterminate hydro-
static pressure.
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4 Constituent formula of Newton fluid
A fluid whose overstress does not depend on density Storks fluid (Storkesian fluid), its
constituent formula is

T = −pI + f(D) (50)

. p is the pressure, I is the unit tensor. Since the tensor D is an objective tensor,
According to the principle of material objectivity the function f

Q · f(D) ·QT = f(Q · D ·QT ) (51)

Must be satisfied. That is, since f is an isotropic tensor function, according to the
display theorem, φi as the scalar function of the main invariant of D

f(D) = φ0I + φ1D + φ2D2 (52)

It can be expressed as. The fluid with overstressing the above equation is Reiner-
Rivlin fluid Also called. The third term of the above equation is a case where the external
force condition suddenly changes It is known to have an impact, Even in fluids that
generally exhibit strong nonlinearity It is known that it is almost negligibly small.

Overstress f(D) is D A fluid that is linearly homogeneous with respect to is called a
Newton fluid. In the above equation φ1 = λ(trD), φ2 = 2µ, If you say φ3 = 0

f(D) = λ(trD)I + 2µD (53)

, The composition formula of the Newton fluid can be expressed as follows.

T = −pI + λ(trD)I + 2µD (54)
= −pI + λ(∇x · v)I + 2µD (55)

Here, µ is the shear viscosity, λ is called the second viscosity. The second viscosity
index λ is like the first constant of Lame in a linear elastic body.

Newton structural formula of the fluid

T = −pI + λ(∇x · v)I + 2µD (56)
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The above equation is the deviation component of D D̃

D̃ = D −
1
3

(trD)I (57)

= D −
1
3

(∇x · v)I (58)

Looking at

T = −pI + (λ +
2
3
µ)(trD)I + 2µD̃ (59)

. Here’s λ + 2
3µ It is called bulk viscosity κ. Bulk viscosity is a measure of viscous

stress accompanying volume change of fluid. The above expression uses κ

T = −pI + κ(∇x · v)I + 2µD̃ (60)

It can be shown. For many fluids κ is known to be very small. So, using the approx-
imation of Stokes to be κ = 0 The constituent formula of the compressible fluid is as
follows

T = −pI + 2µD̃ (61)

= −pI + 2µ(D −
1
3

(∇x · v)I) (62)

This is a constitutive expression of the compressible Newton fluid ignoring the vol-
ume viscosity coefficient. Furthermore, assuming incompressibility in the fluid

∇x · v = 0 (63)

So, the constituent formula of incompressible Newton fluid is

T = −pI + 2µD (64)

.
constituent formula of incompressible Newton fluid

T = −pI + 2µD (65)
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5 Navier-Storks equation
Constitution formula of Newton fluid is as follows

T = −pI + λ(trD)I + 2µD (66)

µ is the viscosity coefficient. This is described by Cauchy’s first law of motion
described in the Eulerian coordinate system

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇) · v = ρg + ∇x · T (67)

Substitute for

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇x) · v = ρg + ∇x · (−pI + λ(trD)I + 2µD) (68)

here

∇x · (−pI) = −
∂

∂xk
ek · (pδ jie j ⊗ ei) = −

∂p
∂xk

(ek · e j)δ jiei (69)

= −
∂p
∂xk

δk jδi jei = −
∂p
∂xi

ei = −∇x p (70)

Substituting

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇x) · v = ρg + −∇x p + ∇ · (λ(trD)I + 2µD) (71)

We call this a stress emanating form of the Navier-Storks equation. Here, we deform
the stress-divergent Navier-Storks equation for the case where the viscosity coefficient
µ and the second viscosity coefficient λ are constant in the fluid.

∇x · (∇ ⊗ v) =
∂

∂xk
ek · (

∂vi

∂xl
el ⊗ ei) (72)

=
∂

∂xk

∂vi

∂xl
(el · ei)ei (73)

=
∂

∂xk

∂vi

∂xl
(δkl)ei (74)

=
∂

∂xk

∂vi

∂xk
ei (75)

= ∇2
xv (76)
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∇ · (v ⊗ ∇) =
∂

∂xk
ek · (

∂vl

∂xi
el ⊗ ei) (77)

=
∂

∂xk

∂vk

∂xi
ei (78)

=
∂

∂xi
·
∂vk

∂xk
ei (79)

=
∂

∂xi
ei(

∂

∂xk
ek · vl) (80)

= ∇(∇ · v) (81)

Therefore, divergence of D is transformed as follows.

∇x · D = ∇x ·
1
2

(v ⊗ ∇x + ∇x ⊗ v) (82)

=
1
2

(∇2v + ∇(∇x · v)) (83)

further,

∇x · (trD)I = ∇x(∇x · v) (84)

The viscosity coefficient and the second viscosity coefficient were made constant in
the fluid. Substituting into the Navier-Stokes equations of stress divergence form, the
Navier-Stokes equation is

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇x) · v = ρg + −∇x p + µ∇2v + (µ + λ)∇x(∇x · v) (85)

Substitute κ = λ + 2
3µ

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇x) · v = ρg + −∇x p + µ∇2v + (κ +
1
3
µ)∇x(∇x · v) (86)

. Here, when Stokes’s assumption κ = 0 holds, The Navier-Stokes equation is mul-
tiplied as follows.

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇x) · v = ρg + −∇x p + µ∇2v +
1
3
µ∇x(∇x · v) (87)
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Further, in the case where incompressibility is established in the fluid Since ∇x ·v = 0
holds

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇x) · v = ρg + −∇x p + µ∇2v (88)

This is called Laplacian type incompressible Navier-Storks equation.

incompressible Navier-Storkes equation

ρ
∂v
∂t

∣∣∣∣∣
x

+ ρ(v ⊗ ∇x) · v = ρg + −∇x p + µ∇2v (89)
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