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1 Angular velocity and parametrization of 3D rotation
In this section, we discuss about variation and time derivative of a rotation matrix.

∗This is just a note to keep in mind what I learned when I was MSc student.
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1.1 Variation of a rotation matrix
Let’s investigate the variation of the rotation matrix. Rotation matrix R satisfies RT R =

I. By computing the derivative as follows:

RT R = I (1)
⇔ δ(RT R) = δI = 0 (2)
⇔ δRT R + RTδR = 0 (3)
⇔ δRT R + (δRT R)T = 0 (4)
⇔ sym(δRT R) = 0 (5)

Therefore δRT R can be seen to be an antisymmetric matrix because its symmetric
component is 0. Since it is an antisymmetric matrix, it can be expressed as follows using
the appropriate vector δΘ and tilde symbol.

δΘ = vect(δRT R) ⇔ δΘ̃ = RTδR ⇔ δR = RδΘ̃ (6)

Although the rotation matrix has various parameterization methods and it was very
complicated, it can be seen that the variation itself can be expressed simply as a vector.
Actually, there is another kind of display of the variation vector of the rotation matrix.
Start from the variations of the identity matrix as before.

RRT = I (7)
⇔ δ(RRT ) = δI = 0 (8)
⇔ δRRT + RδRT = 0 (9)
⇔ δRRT + (δRRT )T = 0 (10)
⇔ sym(δRRT ) = 0 (11)

Therefore, δRRT has symmetric component of 0, which shows that it is an antisym-
metric matrix. Since it is an antisymmetric matrix, it can be expressed as follows using
the appropriate vector δθ and tilde symbol.

δθ = vect(δRRT ) ⇔ δθ̃ = δRRT ⇔ δR = δθ̃R (12)

It was found that the variance of the rotation matrix is vectorized by the two vectors
δθ, δΘ as follows.
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two vector notations for variational rotation

δR = RδΘ̃ (13)
δR = δθ̃R (14)

The meaning of Θ and θ means that each change in rotation is expressed as being
rotated by R after slight rotation by Θ in the initial placement or it is expressed by
saying that θ was slightly rotated in the current arrangement rotated by R It corresponds
to that. It is customary to display vectors in initial placement in capital letters and
vectors in current placement in lower case letters.

δΘ̃ = RTδθ̃R (15)
δθ̃ = RδΘ̃RT (16)

1.2 Angular Velocity Vector
Let’s examine the differential Ṙ of the rotation matrix. Suppose that a certain vector
X in the initial arrangement moves like x = Rx by the rotation matrix R. Taking time
differentiation of both sides yields ẋ = Ṙx, it can be seen that the differential Ṙ of the
rotation matrix expresses the relationship between the vector at the initial arrangement
and the speed at the current arrangement.

By the way, it is a differentiation Ṙ of this rotation matrix, but it can be vectorized
by exactly the same argument as the differential δR of the rotation matrix of the for-
mer subchapter (it can be considered that δ is a time differential operator). The time
derivative of the rotation matrix is displayed by a certain vector Ω, ω as follows.

two vector notation of rate of rotation change

Ṙ = RΩ̃ (17)
Ṙ = ω̃R (18)

In this document, we will call Ω the angular velocity vector in the initial arrangement
and ω the angular velocity vector in the current arrangement.
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Figure 1: rigid body translation and rotation

2 Equation of Motion for Rigid Bodies Derived using
the Hamilton Principle

2.1 mass and the center of gravity
The total mass m of the rigid body is as follows.

m =

∫
v
ρdv (19)

Also, the center of gravity xg is expressed as follows using this

xg =
1
m

∫
v
ρxdv (20)

Here, in a rigid body, the following expression holds.

material point positioin on a rigid body

x(t) = xg(t) + R(t){x(0) − xg(0)} (21)
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Here, there is no volume change in the minute volume as follows.

dv = (det R) dV = dV (22)

Therefore, from the mass conservation law at the mass point,

ρ(x(t)) = ρ(x(0)) (23)

Is satisfied. That is, there is no change in density at a certain material point. Of
course, the mass of the rigid body also does not change over time as follows.

m =

∫
v
ρ(x(t))dv =

∫
V
ρ(x(0))dV (24)

2.2 Mechanical energy
The mechanical energy of the rigid body is as follows.

K =
1
2

∫
v
ρẋT ẋdv (25)

For simplicity, let X be the position with the center of gravity in the initial placement
as follows.

X = x(0) − xg(0) (26)

Then the position of the mass point of the rigid body can be written as follows.

x(t) = xg(t) + R(t)X (27)

The time differentiation of both sides is as follows.

ẋ = ẋg + ṘX (28)

When this is substituted into the above equation, it becomes as follows.

ẋT ẋ = (ẋg + ṘX)T (ẋg + ṘX) (29)
= ẋT

g ẋg + XT ṘT ẋg + ẋgṘX + (ṘX)T (ṘX) (30)

= ẋT
g ẋg + 2ẋgṘX + (ṘX)T (ṘX) (31)

Using this,

K =

(
1
2

∫
v

ẋT
g ẋgdv

)
+

(
1
2

∫
v

2ẋgṘXdv
)

+

(
1
2

∫
v
(ṘX)T (ṘX)dv

)
(32)

= K1 +K2 +K3 (33)
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You can write like this. We will proceed with calculations in order for each item
below

Calculation in first term Calculate for the first term. This term represents the
dynamical energy in the movement of the center of gravity.

K1 =
1
2

∫
v
ρẋT

g ẋgdv =

(
1
2

∫
v
ρdv

)
ẋT

g ẋg =
1
2

mẋT
g ẋg (34)

Calculation of second term The second term of the dynamic energy is as follows.

K2 =
1
2

∫
v
ρ2ẋgṘXdv = ẋgṘ

∫
V
ρXdV (35)

= ẋgṘ
∫

V
ρ
(
x(0) − xg(0)

)
dV (36)

= ẋgṘ
∫

V
ρ{m

(
1
m

∫
V
ρx(0)dV

)
− xg(0)

∫
V
ρdV} (37)

= ẋgṘ{mxg(0) − mxg(0)} (38)
= 0 (39)

It can be seen that this term can be ignored. The reason that the second term disap-
pears is that it shows the transformation and rotation with the center of gravity as the
base point to express the deformation of the rigid body.

Calculation in the third term The third term of mechanical energy was as follows.

K3 =
1
2

∫
V
ρ(ṘX)T (ṘX)dV (40)

Here, the differentiation of the rotation matrix can be transformed as follows.

ṘX = RΩ̃X = −RX̃Ω (41)

When this is substituted into the above equation,

(ṘX)T (ṘX) = (−ΩT X̃T RT )(−RX̃Ω) (42)
= ΩT X̃T X̃Ω (43)

Here, the moment of inertia J
moment of inertia

J =

∫
V
ρX̃T X̃dV =

∫
V
ρ(||X||2I − XXT )dV (44)
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Substituting into the above equation,

K3 =
1
2

∫
V
ρΩT X̃T X̃ΩdV =

1
2

ΩT {

∫
V
ρX̃T X̃dV}Ω =

1
2

ΩT JΩ (45)

Together, the mechanical energy K of the rigid body is as follows,

kinetic energy

K =
1
2

(mẋT
g ẋg + ΩT JΩ) (46)

2.3 Potential Energy
Energy due to volume force and energy due to surface force can be considered as po-
tential energy. Examples of the volume force include gravity, electromagnetic force,
pressure as an example of surface force. Here, consider the volume force, especially the
potential energy due to a constant gravity force g.

V = −

∫
v
ρ (x(t) − x(0))T gdv (47)

= −(xg(t) − xg(0))T mg (48)

Therefore, the potential energy is represented by the displacement of the center of
gravity. The variations are as follows.

δV = −δxT
g (t)mg (49)

2.4 Equation of motion
Derive the equation of motion using the Hamiltonian principle. Using the Hamiltonian
principle, you can choose arbitrary variables for the equation, so you can easily describe
the motion including the rotation like a rigid body. Let’s assume that restraint condition
Φ = 0 is imposed on exercise. Φ is assumed to be differentiable once for the degree of
freedom of translation and rotation of a rigid body. Lagrangian L is defined as follows.
Where λ is the Lagrangian multiplier multiplier.

L = K −V − λT Φ (50)

We define the quantity I called the action as follows.

I =

∫ t2

t1
Ldt (51)
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The Lagrangian principle is that the motion from time t1 to t2 has an extreme value
when the variation in t1, t2 is 0. In other words,

δI = 0 (52)

Is satisfied. Let us derive the equation of motion of the rigid body by actually calcu-
lating this action for the rigid body.

2.4.1 Variation of kinetic energy

The variation of the dynamic energy is as follows

δK = δẋT
g mẋg + δΩT JΩ (53)

= δẋT
g mẋg + (δΘ̇ + Ω̃δΘ)T JΩ (54)

=
d
dt
{δxT

g mxg} − δxT
g mẍg +

d
dt
{δΘT JΩ} − δΘT JΩ̇ + δΘT Ω̃T JΩ (55)

=
d
dt
{δxT

g mxg + δΘT JΩ} − δxT
g mẍg − δΘ

T (JΩ̇ + Ω̃JΩ) (56)

Now, the variations are as follows.

∫ t2

t1
δKdt =

[
δxT

g mxg + δΘT JΩ
]t2

t1
−

∫ t2

t1

[
δxT

g mẍg + δΘT (JΩ̇ + Ω̃JΩ)
]

dt (57)

= −

∫ t2

t1
δxT

g mẍg + δΘT (JΩ̇ + Ω̃JΩ)dt (58)

Here, we used δxg = 0 and δΘ = 0 at time t1, t2.

2.4.2 Variation of constraint

The motion of the rigid body is represented by the position xg and the rotation R of the
center of gravity. Let’s calculate this variance assuming that constraints are imposed on
this.

λT Φ = δλT Φ + λTδΦ (59)

Now looking closely at δΦ in the second term on the right side of the above equation,

δΦ = Φ(δxg,R) + Φ(xg, δR) (60)
= Φ(δxg,R) + Φ(xg,RδΘ̃) (61)

=
∂Φ

∂xg
δxg +

∂Φ

∂Θ
δΘ (62)
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2.5 Derivation of equations of motion by variation of action

δI = δ

∫ t2

t1
Ldt (63)

= δ

∫ t2

t1
K − P − λT Φdt (64)

= −

∫ t2

t1
δxT

g mẍg + δΘT (JΩ̇ + Ω̃JΩ)dt +

∫ t2

t1
δxT

g mgdt (65)

−

∫ t2

t1
δλT Φ + λT

{
∂Φ

∂xg
δxg +

∂Φ

∂Θ
δΘ

}
dt (66)

=

∫ t2

t1
δxT

g

−mẍg + mg −
(
∂Φ

∂xg

)T

λ

 dt (67)

−

∫ t2

t1
δΘT

g

JΩ̇ + Ω̃JΩ +

(
∂Φ

∂Θ

)T

λ

 dt −
∫ t2

t1
δλT Φdt (68)

Since this is true for all δxg, δΘ, δλ,


mẍg +

(
∂Φ
∂xg

)T
λ = mg

JΩ̇ + Ω̃JΩ +
(
∂Φ
∂Θ

)T
λ = 0
Φ = 0

(69)

Is satisfied.
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