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1 Notation and Vector Calculus

For arbitrary three dimensional vector a, We denote skew-symmetric matrix (antisym-
metric matrix) 4 € R¥ such as

0 —as dy
a= as 0 —dq (1)
—ad; a 0

The matrix-vector product with this matrix is equivalent to the exterior product (cross
product)
axb =ab. (2)

The component of this skew-symmetric matrix can be written as:
a-= —E,'jkclke,' ® ej, (3)

where € is the Levi-Civita symbol.
If we change the order of this skew-symmetric matrix and vector, the sign changes

—a3b2 + a2b3
ab = +aszb, — a\bs 4)
—ar)by + a1bs
—bsa; + byas
= —3 t+bsa; —bia; (@)
—-bra; + bia,
& ab = -ba. (7)
We multiply a vector a to a skew-matrix b from left to get
a’b = -b’a. (8)
The product of two skew-matrices can be written as
[ 0 —dsz dp 0 _b3 b2
ﬁf) = as 0 —da b3 0 —bl (9)
| —dy a4 0 —bz bl 0
[ —ayb, - azbs arb, azb,
= aib, —a1by — azbs azb, (10)
aibs axbs —a\by — axb,
[ a1b1 a2b1 Cl3b1 1 00
= albz (lzbz a3b2 - (a1b1 + a2b2 + a3b3) 010 (1 1)
| a1b3 Clzb3 Cl3b3 001
= ba’ —(a’b)I (12)



From (1), @) and (12)), we have
[ 0

ab = | —axb; +ab;
| —a3b1 + a1b3

[ a\by  axb,
= a\b, ab,
a\by axbs

Cl3l’)1
aszby |-

asb;

arb; —a by +a3b1 - Cl]b3
0 +aszby — abs
—Cl3b2 + Clzbg 0

aby aby ab;
aby  axby axbs }
azby azb, azbs

= ba’ —ab’ = 2asym(b’a)
= {ba’ —(a’b)1} - {ab” — (bTa)l}

= ab —ba.

Using the notation of cross product X, this can be written as

(axb)xyv

1.1 Repetitive Cross Product

= —vX(axb)

= vx(bxa)

= b(v-a)—(v-b)a
= {ba’ —ab’}v.

Let’s apply the same outer product multiple times

ax(@ax@xv))

ax{a(a-v)—(a-a)v}
(axa)a-a)—(a-a)axv)
—laf*(a x v).

|

(13)

(14)

(15)
(16)
(17)

(18)
(19)
(20)
21)

(22)
(23)
(24)

Applying the same outer product a twice results in just scaling —|a|* to the original

vector a X v.

We apply this transformation recursively to obtain

5211— 1
§2n

(_1)n—1|a|2(n—1)2~l
(_l)n—l |a|2(n—1)2~12

(25)

(26)

(27)



1.2 Coordinate Transformation

Let an orthogonal matrix R whose determinant is 1 (i.e., rotation matrix)
(Rey) X (Re;) = R(e; X ;) = Res (28)
Using this relationship, we have
Rv = RiR” (29)

For the orthogonal transformation that includes reflection transformation (i.e, det V =
—1), the sign changes as .
Vu=-ViaVv’ (30)

A vector with such a property is generally called as pseudo vector.

2 Parameterization of Rotation

Three dimensional rotation specifies linear transformation from a three dimensional vec-
tor to a three dimensional vector. Therefore, it can be written as a 3x3 matrix. However,
due to the orthogonality constraints, these nine components of the matrix can not take
arbitrary value independent. We can, the rotation can be represented using three or four
parameters.

Parameterization of rotation is important not only for reducing variables but also
for interpolation. If you want to find a rotation and an intermediate rotation between a
rotation, you can not average the rotation matrix. The average of the components of the
two rotation matrices is no longer a rotation matrix. However, since the parameter can
always be converted to a rotation matrix, it is possible to average the parameters and
obtain an intermediate rotation matrix therefrom.

Typical parameters are given below.

e Euler angle
e Bryant angle

Cartesian rotation vector

Rodrigues parameter

Euler parameter (Quaternion)

Conformal Rotation Vector (CRV)



Figure 1: Vector rotation with Cartesian Rotation Vector

Euler Angle and Bryant Angle take a parameterization method of how much an
object is rotated along the regular coordinate axes on the object and three coordinate
axes on the space, whereas Cartesian rotation vector, Rodrigues parameter and Euler
parameter And Conformal rotation vector parameterize the object by rotating it around a
certain vector. The former is easy to understand intuitively, but since there are problems
such as gimbal lock, in general the latter parameters are used inside the calculation.
Below, we will discuss each parameterization.

2.1 Cartesian Rotation Vector

Suppose the following vector W represents a rotation rotated by 6 around the unit vector
n.

¥ = nd 31)

The rotation matrix can be written as follows.

R =1+ sinéi + (1 — cos H)ini (32)




2.1.1 Infinitesimal Rotation Approximation

At |¥] = 6 << 1 it is Infinitesimal rotation. Since sin(6) =~ 6, (1 — cos(d)) =~ 6%/2 holds
at this time, the rotation matrix can be approximated as follows.

6? I B
RzI+9ﬁ+Eﬁﬁ = I+‘I’+§‘I"I‘ (33)
|
= I+‘P—§|‘P|2I (34)
1 _
= (1—5|l11|2)1+\1' (35)

This approximation is second-order accuracy, but if we consider (1 — cos(8)) =~ 0
simply considering first-order accuracy, we can approximate as follows.

infinitesimal rotation (1st order approximation)

R=I+0a=1+¥ (36)

2.1.2 Rodrigue’s rotation formula

Using ab = ab” — (a’b)I for this expression, the rotation matrix can be transformed as
follows.

=
Il

I + sin6i + (1 — cos 6)(nn’ — |In||*T) (37)
cos 0 + sin 01 + (1 — cos O)nn’ (38)

This formula is called Rodrigue’s rotation formula.

Rodrigue’s rotation formula

R = cos 6l + sin 6i + (1 — cos §)nn” (39)

2.1.3 Rotation Matrix as a Exponential Function

The rotation matrix can also be interpreted by infinitely small sets of small rotations as
follows. This can be written from the definition of the operator on the shoulder of the
index as follows.

R(Y) = lim {1 + %‘I’} = exp¥ (40)

n—oo

6



Now, if we transform the equation as follows, it turns out that the definition of
rotation using this exponential function gives the same rotation matrix. However, in this

case, the relational expression of Y¥ = —|¥1 is used.
R(Y) = ¥=1 l\i' l\iﬂ 1\i'3 41
()_exp_+ﬁ+§ +§ + - 41)
3 1 1 , 1 (=Dt 2n-1) -
= 1+(ﬂ—§9 +§94+--~+m9 _—— 4 (42)
1 1 2 1 (_l)n_l 2(n—1) Jr2
+(2—!—4—!0 +ao94+-~-+(2—n)!6' o | P (43)
_ 1 Iy 15 G A %
= I+(1—!0—§9 +§6 +---+m6’ +---|¥Y/6 (44)
Lo, 1, 15 GRS 72 /02
+(2—!9—4—!9 +59 +-o 4 )] 0" +--- |¥°/0 (45)
= I+ sindn + (1 — cos H)in (46)
2.2 Rodrigues Parameters
2tan(6/2
w = 2tan(g/2)n = 202y, (47)

Rotation using w is as follows.

rotation matrix

1 1
I+ —— (o+-aG 4
T 02510p @t 290 &)

As opposed to when using 6, terms such as sin(6) disappear and handling becomes
easier.

2.2.1 synthesis rule
R(w2)R(w1) = R(wr2) (49)

w1+w2—%w1><w2

Wi = (50)

1- %w{wz



2.3 Euler Parameter (Quaternion)

The Euler parameter is the amount of four variables of the cosine of the half angle of
the rotation angle of the Cartesian Rotation Vector and the vector obtained by scaling
the Cartesian Rotation Vector by sin g /6 times as follows.

0 0
eO:cosz, e:nsinz &1

This is equal to the quaternion whose ey is the real part and e is the imaginary part.
The following relational expression holds between ¢, and e.

ey =1-llel’ (52)

In addition, the following relational expression holds with the Rodrigues parameter.

w=—e (53)

The rotation matrix is as follows.

Rotation matrix from Euler’s parameter

R = (2¢} — DI + 2ee” + 2¢(é (54)

2.3.1 Deriving Euler Parameter from Rotation Matrix (verl)

R =3 x (2e5 — 1) + 2|lle||* = 4ep — 1 (55)
1
6025 V1 + trR (56)

1 1 1
"o = (2e5 — 1)+ 2¢; = SR -2+ 27 = el = > V1+2rg—trR  (57)

vect(R) = 2¢pe (58)

1
e = Esign(vect(R)k) V1 +2ry —tR 59)



2.3.2 Euler Parameter from Rotation Matrix (ver. 2)

The method that is more accurate than the above method is the following method. Con-
sider the following matrix S.

2
60 €p€1 €p€y €pés

_ T _ eiey € eey ee3
S =dlev.eMfene) 4| 0 0B (60)
eseq ee ezer €
The matrix S can be created as follows.
L+riy+rn+rs ran—rs3 I3 — 131 I21 — T2
_| 22— 123 L+r—rp—r3 ro+r ri +r3
S = 61)
ri3 — 13 21+ 712 I=rii+rp—rya r3+rp
21— T2 T3+ 13 I3 + 13 I —ri —rn+r33
At this time, Euler parameters can be obtained as follows.
ei =3 VS
Sii = maX{Skk} = ZS,‘,‘ (62)
k €k = I,
2.4 Conformal Rotation Vector (CRYV)
The Conformal Rotation Vector (CRV)
0
¢ = 4ntan 7 (63)
The following relational expression holds between the Euler parameter.
48,‘
;= 1=0,1,2,3 64
¢ 1+ €o (l ) ( )
1 2
co = §(16 = llell?) (65)

Using this, the rotation matrix can be written as

R |(c} +8co — 16)I + 2¢c” + 2coc| (66)

T G-ar




2.5 Bryant Angle

Itis Bryant Angle’s way to rotate around an orthogonal coordinate system fixed in space.
Bryant Angle (¢, ¢, 6) represents the rotation when the coordinate axes X, Y, Z of
space are rotated by ¢, ¢, 8 in order.

1. X Rotate by ¢ around the axis
2. Y Rotate i around the axis

3. Z Rotate 6 around the axis

When writing a matrix that rotates # around the axis v as R(v, ), the rotation matrix
R is as follows.

rotation matrix

R = R(Z,OR(Y, y)R(X, ¢) (67)

2.6 Euler Angle

It is the Euler angle approach to rotate around an orthogonal coordinate axis fixed to the
object.

2.6.1 Euler Angle Definition

It is assumed that the coordinate axis fixed to the substance coincides with the coordinate
axis (X, Y, Z) fixed in the space as the state before rotation as (x, y, z). The Euler angle
¥, 0, ¢) is defined as follows

1. Rotate ¢ around z. The coordinate axes are rotated to (X, Y,Z2) — (x',y’,7)
2. Next, rotate only 6 around x’. Rotated to (x',y",7) — (x”,y",7"”)

3. Next, rotate ¢ around z”. Rotated to (x”,y”,z") — (x,y,2)

2.6.2 Rotation Matrix from Euler Angle

In the Euler angle, we obtained the rotation around the rotated axis. Let’s consider a
matrix R(R,v, #) that rotates around R;v by 6. In this case the following holds.

R(R,v,0) = R|R(v, )R] (68)

Let us derive the rotation matrix of Euler angles using this.

10



x X cosyy siny O X
Y ¢=RZ, %)y Y ; =| —siny cosy O Y (69)
4 Z 0 0 1 Z

x// xl
{y” } = R(X’,H){ y } (70)
Z/I ZI

xl
= RR(Z,y)x, 9){ y } (71)
Z/
xl
= R(Z,y)R(X,0) RT(Z,lﬂ){ y } (72)
Z/
X
= R(Z,l//)R(X,Q)RT(Z,Iﬁ)R(Z,w){ Y } (73)
V4
X
= R(Z,y)R(X, 0){ Y} (74)
Z

X
- Ry (75)
Z

However, we defined rotation matrix R; as follows.

R, =R(Z,y)R (X, 6) (76)

11



x xl/
{y } = R(Z”,qﬁ){ y’ }
Z ZII

X
= R(R1Z,¢){ Y }

Z

xl/
= R/R(Z,¢) RIT{ V! }

4

X
= R,R(Z, ¢)R1TR1{ Y }

z
X

= RR(Z.¢){ Y
z

X
R(Z,y)R(X,0)R(Z, $) { Y }
Z

Therefore, the rotation matrix R becomes as follows.

rotation matrix from Euler’s angle

(77)

(78)

(79)

(80)

(81)

(82)

R = R(Z,y)R(X, OR(Z, ¢) (83)
The rotation matrix R(Z, ) that rotates by # around the Z axis
cosf —sinf 0
R(Z,0) = | sinf cosd O (84)
0 0 1
Similarly, the rotation matrix R(X, 6) rotating by 6 about the X axis is
1 0 0
RX,0)=| 0 cosf —sinf (85)

0O sin@ cos@

12



R(Z,y)R(X, OR(Z, ¢) (86)

cosyy —siny 0 1 0 0 cos¢p —sing 0
singy cosyy O || O cosf —sinf sing cos¢ O (87)
0 sinf cosé

o 0 1 o 0 1

[ cosycosg —sinycos@sing —cosysing — siny cosfsing  siny sin 6 }

siny cos ¢ + cosycosfsing —sinysing + cosycosfcos¢p —cosy sif8
| sin@sin¢ sin @ cos ¢ cosd
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