Jacobian & Hessian



Multivariate Function: High Dimensional Map
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Trajectory of the Function
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Differentiation of the Map
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Jacobian Matrix: Gradient of Map
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Jacobian Matrix: Gradient of Map
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Jacobian Determinant: Volume Change Ratio
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Hessian Matrix: Jacobian Matrix for Gradient

* Second derivative of a scalar function f(x)
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Symmetricity of Hessian

Symmetric Matrix
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Numerical Optimization



What is Optimization?
* Find input parameter)_() where a cost function W()_()) is minimized
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Optimization Solve Many Problems

* What typical computer science paper looks like:

a sketch or a parameter sample, and (iii) the reconstruction error
of a parameter sample from itself in an auto-encoder fashion. Thus,

the combined loss function is defined as:
Z(P,M,S) = w1||P = frap(fs2.(5))ll2 + w2[IM = fram(fs2.(5))l2

+ w3||M = fram(fpar (P2 + @4llP = frap(fpar (P))ll2,
(1)

where {w1, w3, @3, w4} denote the relative weighting of the individ-
ual errors. We set these weights such that the average gradient of

Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popovi¢, and Niloy J. Mitra. 2018. Learning a shared shape space for
multimodal garment design. ACM Trans. Graph. 37, 6, Article 203 (November 2018), 13 pages.
DOI:https://doi.org/10.1145/3272127.3275074



Solving Constraints v.s. Optimization

Solution should be Solution should be at the
on this line bottom of this hole




Solving Constraints v.s. Optimization

Solution should be Solution should be at the
on this line bottom of this hole
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Three Optimization Approaches

* Stochastic Optimization

» Requires gradient VIW (X)

* Gradient Descent \‘

* Newton Method ?

Requires gradient & hessian
v (X), V2w (X)




Stochastic Optimization
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Find Minimum by Random Sampling 1
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Find Minimum by Random Sampling 2
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3. Make a candidate
X':11 = X; + Random
4. Evaluate W(X i+1)



Find Minimum by Random Sampling 3

Wi W& | [wE)

5. Move X to the candidate
if W (X'141) < W(X))
6. Goto 3




Simulated Annealing Method

Gradually make the random update small during iteration
mm)> Make the optimization robust to local minima

Credit: Kingpin13 @ Wikipedia



Stochastic Optimization: Blinded Golf

* Optimizer do not know the direction & strength to hit

Swing in the
random direction!

A




Gradient Descent Method



Gradient Descent Method

* A.k.a “steepest descent method” or “hill climbing method”

Let’s keep
going down




Gradient Descent: Blinded Golf with a Guide

* Optimizer know the direction, but do not know strength to hit

r Aim that direction!
Gr =A?

[ OK, but how hard? 7

/.
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Japanese Version of “Pinata”

* Breaking a watermelon with a stick on a beach

AA Move left and hit!}
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What is not Minimum
* A point is not minimum if there is a direction changing W (x)
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What is not Minimum

* A point is not minimum if Idx # 0 s.t. VW (x) - dx # 0

dx 7l

F JdW dW = VW (x) - dx < 0
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What Might be Minimum: Zero Gradient
Find the root

VIWW(x) =0
VW (x) = 0 VIW(x) # 0 \
Q c@)\) of VIW (x)
b This is necessary condition (not sufficient)
i.e., at least VIW (x) needs to be zero

at the minimum




Finding the Root of a Scalar Function

f(x)

f(x:)

LY V.4

To find x where f(x) =0

Iterate: f(xl)
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Finding the Root of a Multivariate Function

f(x)
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To find X where f(%) = 0

lterate:

—1
%1 = % — F@@)

Jacobian matrix

* Vf (%) need to be invertible



Finding the Root of Gradient VW (x) = 0

* Gradient of gradient is called hessian
f=vWw
To find X where f(%) = 0 To find X where VIW (x) = 0
Iterate: Iterate:

= 5 -1 -
Xi+1 = Xj — [Vf(xl)] f(x) D_C)i+1 = D_C)i — _1VW(5C)i)

hessian



Gradient Descent: Golf without Blindfold

* Optimizer know the direction & strength to hit

f'.( y
# | can swing with

confidence




Comparison of Three Approaches

Stochastic Optimization

© Only evaluation of a
function is necessary

@ Very slow
® Not scalable
® Heuristics

Gradient Descent

© Only gradient is
necessary
© Very scalable

® Slow
@ Parameter tuning

Newton Method

© Very fast for almost
guadratic problem

@ Require Hessian
® Complicated Code



Advanced Topics

* Stochastic Optimization
* Metropolis Hasting Method
* Meta-heuristic Optimization (Particle Swarm, Evolutionary Algorithm)

* Gradient Descent &
* Stochastic Gradient Descent !

* Newton Method

* Levenberg—Marquardt method
* L-BFGS method




Typical Mistakes in Optimization

* Don’t use numerical difference in gradient or Newton method

W(x + ee;) — W(x) %
(VW)= ; X

Not scalable for large DoFs Inaccurate around convergence
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