Principal Component
Analysis (PCA)



Let’s Average Orientations !

® average



Averaging Vectors is not Straightforward

Naive orientation representations may cancel out each other
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Formulation of Add-able Orientation?

* What is the representation opposite direction is the same?
* Removing orientation information from a vector?
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Matrix of Outer Product is the Solution

e Symmetric matrix from a vector
VoVg VoV1 VoV

VRV = vu! = |V1Vg ViV1 VVy
UaVg VoVUp VaVy

* The opposite vector gives the same matrix

(—)Q(—7) = VQV



Linear Form & Quadratic Form

Linear form Quadratic form
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Interpretation of Quadratic Form

 Represent how much input vector € is parallel to the vector v

eTAé = eT(v@v)é = (8Tv)(8Te) = (T¥)>?
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What is Variance?

e \Variance means deviation from the mean
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How Should We Choose Axis?

* Finding the axis with highest variance -> PCA!




What is PCA?

* Low-dimensional approximation of hi-dimensional data
* Find directions of large variance (the magnitude of distribution)
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PCA Step 1: Averaging Points

* Adding up the multivariate value x; and divide with #samples
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PCA Step 2 : Computing Difference

* Matrix A: deviation from average
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PCA Step 3 : What is Covariance Matrix?

e AT A is called covariance matrix
e Covariance is positive (semi-)definite
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What is the Covariance Matrix?

 Variance in higher dimension

* Given direction ¢, the variance in that direction is ¢’ Sc
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PCA Step 4 : Eigen Value Decomposition

* Find the axis with large variance by eigen decomposition
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Symmetric matrix has real eigenvalues
Its eigenvectors are orthogonal




Power Method for Maximum Eigenvalues
* [teration quickly converges into maximum eigen vector
7 Ui+1 — Avi
2 Ui+1= Ui+1/HUi+1”
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* Rayleigh Quotient gives maximum eigenvalue
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