Einstein’s Summation Rule

o | have made a great
* Repeated indices are summed over | giscovery in mathematics!

inner product
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Frobenius inner product
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Let’s Practice Einstein’s Summation Rule
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Frobenius Inner Product (4, B)r = A;;B;;
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Tensor



What is Tensor?
) {n mathematics, a tensor is an algebraic h

object that describes a (multilinear)
relationship between sets of algebraic
objects related to a vector space.

& https://en.wikipedia.org/wiki/Tensor /
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Two ways to Understand 2"9-order Tensor

* Transformation by a tensor is give by the inner product

Linear form Quadratic form
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Outer Product (Tensor Product)

e Outer product makes a tensor from two vectors

i®b ™= (GQb)-i =d(b-u)

* Tensor product e®e (|le]| = 1) defines projection

check it out!
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Definition
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Projection P
P(Px) =27
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Outer Product (Tensor Product)

* Transformation for vectors in the outer product

check it out! (A&)@(BE):?

Definition

| AR i®b

(d®b) -1 = d(b - 0)



Tensor + Basis = Matrix

* Inner product with a basis vector gives a coefficient
* This is true even if the basis is not orthonormal
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vi=v-5i

a;j =€ - (A-é€)



Tensor & Matrix: Common Misunderstanding

<[Wrong idea! Correct your thought!

: Matrix
Tensor — Basis x
- — -

| <[Nice | Go ahead!

: — Matrix
Tensor x Basis
- — (coefficients)




Orthonormal Coordinates

e Tensor can be written with bases and coefficients

/ _ 5\ = - check it out!
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Curvilinear Coordinates

* Non-orthogonal and un-normalized bases

* Dual bases solve the problem

dual basis
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Curvilinear Coordinates

* Expression of a vector in curvilinear coordinates
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Curvilinear Coordinates

* Expression of a tensor in curvilinear coordinates
gt (A .gj)»A =a’g; ® g,
Ygi (A g])»A — Cll]
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Coordinate Transformation

tensor: A
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same tensor, different
(coefficient) matrix!
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Rotation of a Tensor

* Un-rotating input and rotating output

tensor: A tensor-: RT

@




Rotation of a Tensor

* Rotating bases while using the same coefficients

A — aijé)l' ® é)j check it out!

rotation of basis

}
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Simple Elastic Potential

Energy for Continuum
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Eigenvalue of Symmetric Tensor

* Eigenvalue of tensor is defined without matrix & coordinate

Linear form

AW=A-v

vector A v = vector v
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tensor



Eigenvalues and Frobenius Norm

tr(A) = 2'1 -+ 2,2 -+ /13
"L A%é = A%é
tr(AZ) — /1% + /1% + /1% Frohenius norm
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rest shape deformed shape




rest shape deformed shape




rest shape

F : deformation gradient tensor

F =0%/0X
I .
dX \‘\-‘:‘_{.r, -

linear form

deformed shape

dx = FdX




SVD of Deformation Gradient Tensor
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SVD of Deformation Gradient Tensor

F=UxV" Y = 0,

/

e Y isthe value we want for energy
* but SVD is costly
* How can we obtain X without SVD? V)

\_




Gram Matrix F' F Stands for Length Change

e C = FTF: right Cauchy-Green tensor

R Quadratic form
5 Fe
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Right Cauchy-Green tensor

L°(e) =e'F'Fe




Eigenvalue: Right Cauchy Green Tensor F'F

* Right Cauchy Green tensor is symmetric FTF = V24y T

* Eigenvalues of FTF is squared of singular values : 0f, 6%, 0%

&\ 627,
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rest config. deformation in rest config.




Eigenvalue: Green Lagrange Tensor F'F — I

rest config

FI'F—1]
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deformation
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in rest config



Making Energy from Eigenvalue

* Energy for isotropic material

W) =|IFTF = I||z = (6f — 1)? + (65 — 1)? + (05 — 1)?

FTF —1
P Q{Qﬂ YT,
25 (}/ ad

Let’s put penalty on the absolute value of
(of —1),(o5 —1) and (05 — 1)




Making Energy from Eigenvalue

* Energy for isotropic material

W) =|IFTF = I||z = (6f — 1)? + (65 — 1)? + (05 — 1)?

~in This energy doesn’t have costly SVD and eigen
2 decomposition easy to compute gradient & hessian!



Making Energy from Eigenvalue

W) =|IFTF = I||z = (6f — 1)? + (65 — 1)? + (65 — 1)?

Wait... W(F) = 0 is not always no deformation. L ,.\
What about mirror reflection g; = —17? s
~
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This energy is not
robust to inversion



Invertible FEM [Irving et al. 2004]

* Elastic potential energy based on singular values of F that

are o;, not on the eigen values of FTF that are al-z

G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '04)



Finite Element Method



What is Finite Element Method?

* Solution by energy minimization

fsolution — argl;nin W (x)

*Value inside element is interpolated 2
X1 3
.9_C> = 2 Wifi
IENodes
X

*Energy is integrated inside element and summed

W@ = ) W@

eeElements



FEM of Laplace Equation on Triangle

the energy is sum of the squared

Discrete Laplacian —
> differences between neighbors

the energy is integration of the

Continuous Laplacian — ,
squared gradient

Making the solution as
smooth as possible!
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Deformation Gradient Tensor F for Tet.

rest shape deformed shape
X,

)’(’3 (X — %1) = F(Xz — X1)

(X3 — %) = F()?3 - )?1)

(9_54 — 921) — F()?AL — )_()1)

X,
[X; — X1, X3 — X1, X4 — %1] = F[Xz — X1, X3 — X1, Xy — X1]

F =Xy — %1, %5 — %1, %4 — %1][ Xz — X1, X5 — X1, Xy — Xq]



Deformation Gradient Tensor F for 3D Tri.

rest shape . ) deformed shape
(9?2 — f1) — F(Xz — X1)

)_()3 (X3 — %) = F()?3 _)?1)
n=FN

X3
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Linearization of Green-Lagrange Strain

Green Lagrange Strain: E = FTF — |



More Realistic Elasticity Model

Green Lagrange Strain: E = FTF — |

W(F) = |[FTF —I||? W(F) = |[FTF —I||?



4th-order Tensor

Definition of Inner product in higher dimension
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2"d order 4th order 2"d order

tensor tensor tensor



