# **Time Integration**

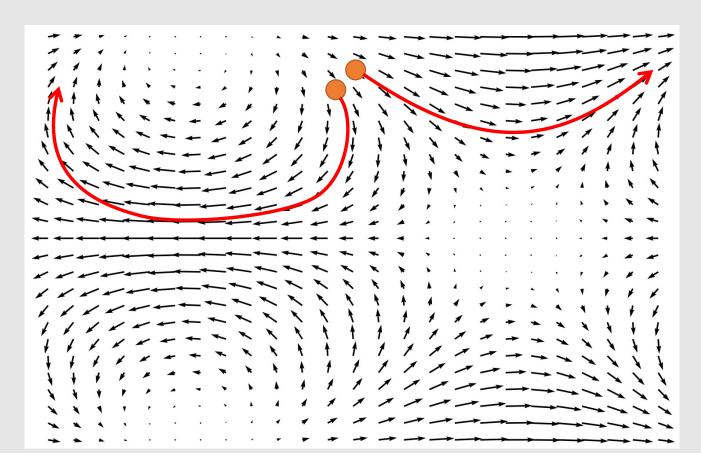
時間積分

# System of Differential Equations

連立線形微分方程式

## Tracing a Particle in a Velocity Field

• E.g., massless particle in a steady flow



#### System of 1<sup>st</sup> Order Differential Equations

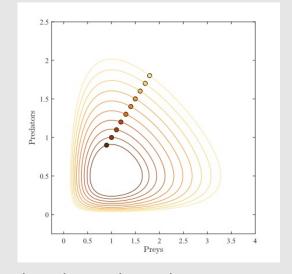
- Moving a particle inside a vector field
  - Electrical engineering
  - Control theory
  - System biology

$$\frac{d\vec{x}}{dt} = f(\vec{x})$$

Lotka-Volterra equations
(a.k.a predetors/preys equation)

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$







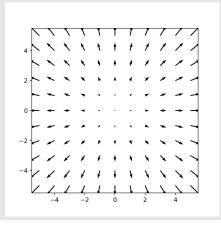
(Wikipedia: Lotka-Volterra equations

#### Linear 1<sup>st</sup> Oder System of Diff. Eqn.

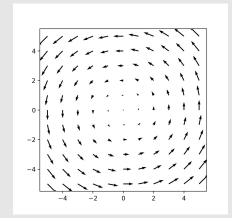
• What if  $f(\vec{x})$  is linear?

$$\frac{d\vec{x}}{dt} = A\vec{x}$$

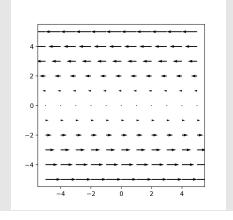
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$



$$A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$



#### Solution of Differential Equations

1<sup>st</sup> order differential equation

$$\frac{dx}{dt} = ax$$



$$\frac{dx}{dt} = ax \qquad \text{solution} \qquad x(t) = e^{at}x(0)$$



System of 1<sup>st</sup> order differential equations

$$\frac{d\vec{x}}{dt} = A\vec{x} \qquad \text{solution} \qquad \vec{x}(t) = e^{At}\vec{x}(0)$$



$$\vec{x}(t) = e^{At}\vec{x}(0)$$



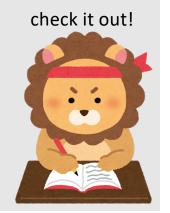
#### **Matrix Exponential**

The Taylor expansion of the exponential function

$$e^{x} = 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots$$

$$e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^2 + \frac{1}{3!}(At)^3 + \cdots$$

$$\frac{d}{dt}(e^{At}) = ?$$



#### **Geometrical Interpretation**

Let's go back to the definition of the exponential

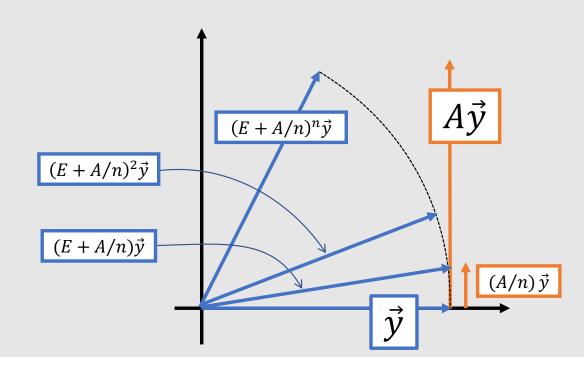
$$e^{x} = \lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^{n}$$



$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$
 multi-variable  $e^{A} = \lim_{n \to \infty} \left(E + \frac{A}{n}\right)^n$ 

For example, let *A* is a matrix to compute tangent in 2D

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$



#### Compound Interest(複利効果)

$$$1 \xrightarrow{50\%} $1.5 \xrightarrow{50\%} $2$$

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n$$

$$$1 \xrightarrow{25\%} $1.25 \xrightarrow{25\%} $1.5625 \xrightarrow{25\%} $1.95 \xrightarrow{25\%} $2.4375$$

$$$1 \xrightarrow{1/365\%} $.... \xrightarrow{1/365\%} $.... \longrightarrow $2.714..$$

$$$1 \rightarrow $.... \rightarrow $.... \rightarrow $.... \rightarrow $...$$



#### Wealth is Exponential



**Compound interest** is the 8th wonder of the world. He who understands it, earns it; he who doesn't, pays it.

-Albert Einstein

#### r>g

(i.e, you can earn more from investment than working hard)
Thomas Piketty, Capital in the Twenty-First Century



(Wikipedia)

#### Diagonalization and Matrix Exponential

eigen decomposition

$$Av_i = \lambda_i v_i \qquad \qquad A = V \Lambda V^{-1}$$

$$e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^2 + \frac{1}{3!}(At)^3 + \cdots$$



## System of 2<sup>nd</sup> Order Differential Equation

• 2<sup>nd</sup> order system can be transformed into a 1<sup>st</sup> order system

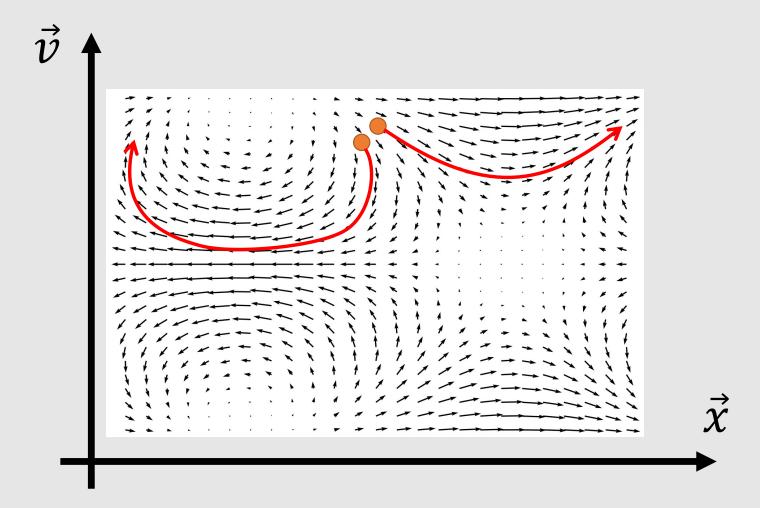
$$\frac{d^2\vec{x}}{dt^2} - A\frac{d\vec{x}}{dt} - B\vec{x} = 0$$

$$\vec{v} = \frac{d\vec{x}}{dt}$$

$$\frac{d}{dt} \begin{pmatrix} \vec{v} \\ \vec{x} \end{pmatrix} = \begin{bmatrix} A & B \\ E & 0 \end{bmatrix} \begin{pmatrix} \vec{v} \\ \vec{x} \end{pmatrix}$$

Analyzing stability of this system requires Laplace transformation, which is beyond the scope of this lecture

#### Mechanics: Trajectory in Phase Space



# **Discrete Time Integration**

#### Why Temporal Discretization?

Dynamic system doesn't always have an analytical solution

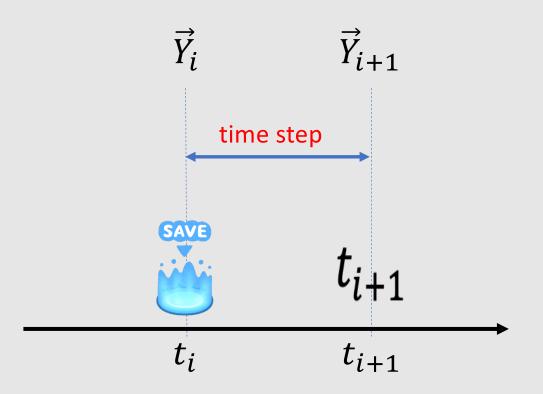


- Computer cannot handle continuous value
  - Similar to "quantization" and "sampling" in audio processing



#### **Time Integration for Temporal Discretization**

• The interval is called "time step"



Recurrent formula

$$\vec{Y}_{i+1} = F(\vec{Y}_i)$$

Given equation of motion, what are the  $\vec{Y}_i$  and  $F(\ )$ ?

#### **Approximating Gradient by Difference**

$$\frac{dx}{dt} = F(x)$$



forward(explicit) 
$$\frac{x_{i+1} - x_i}{dt} = F(x_i)$$

backward(implicit) 
$$\frac{x_{i+1} - x_i}{dt} = F(x_{i+1})$$

Complicated but Stable

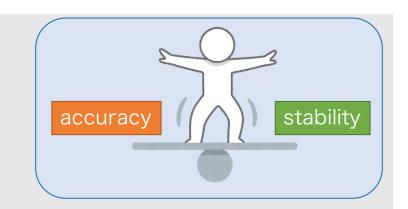


#### Recurrence Relation from Backward Euler

$$\frac{x_{i+1} - x_i}{dt} = F(x_{i+1})$$
Taylor's expansion
$$\cong f(x_i) + \frac{dF}{dx} \Big|_{x_i} (x_{i+1} - x_i)$$

(write equation Here)

#### **Accuracy of Time Integration**



Forward(explicit) 
$$\frac{x_{i+1} - x_i}{dt} = F(x_i)$$

1st order

Average

Crank-Nicolson method

$$\frac{x_{i+1} - x_i}{dt} = \frac{F(\mathbf{x_i}) + F(\mathbf{x_{i+1}})}{2}$$

2<sup>nd</sup> order

Backward (implicit) 
$$\frac{x_{i+1} - x_i}{dt} = F(x_{i+1})$$
 1st order

## 2<sup>nd</sup>-order Differential Eqn. by Backward Euler

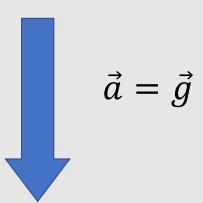
Backward
Euler method

$$\frac{ds}{dt} = \frac{s_{i+1} - s_i}{dt} = F(s_{i+1})$$
plug in  $s_i = \begin{pmatrix} \vec{v}_i \\ \vec{x}_i \end{pmatrix}$ 

(write equations here)

#### Simple Example: Particle Under Gravity

$$m\vec{a} = m\vec{g}$$
 
$$\begin{cases} \vec{v}_{i+1} - \vec{v}_i = dt \cdot \vec{a}_{i+1} \\ \vec{x}_{i+1} - \vec{x}_i = dt \cdot \vec{v}_{i+1} \end{cases}$$



$$\vec{v}_{i+1} = \vec{v}_i + dt \cdot \vec{g}$$
  

$$\vec{x}_{i+1} = \vec{x}_i + dt \cdot (\vec{v}_i + dt \cdot \vec{g})$$



## Karl Sim's Particle Dreams, 1988

https://www.karlsims.com/particle-dreams.html



#### Karl Sim's Another Awesome Work

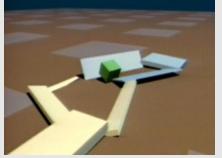
K.Sims, "Evolved Virtual Creatures", Siggraph '94

https://www.karlsims.com/evolved-virtual-creatures.html











https://www.youtube.com/watch?v=RZtZia4ZkX8

#### **Advanced Topics**

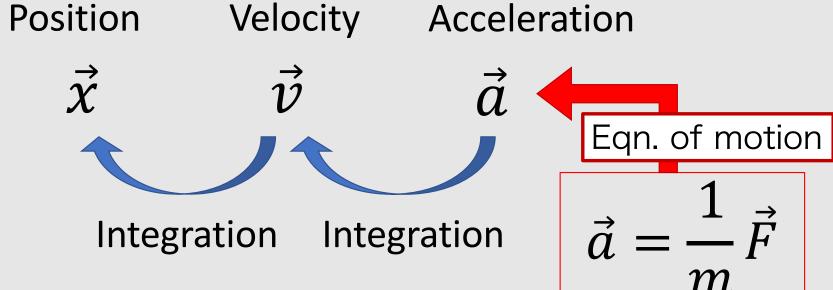
- Runge-Kutta method
- Variational Implicit Euler Method
- Symplectic Integrator
- Lie group integrator

## **End**

#### **Time Integration**

Recurrence formula from equation of motion





#### Time Integration: 1<sup>st</sup>-order Differential Eqn.

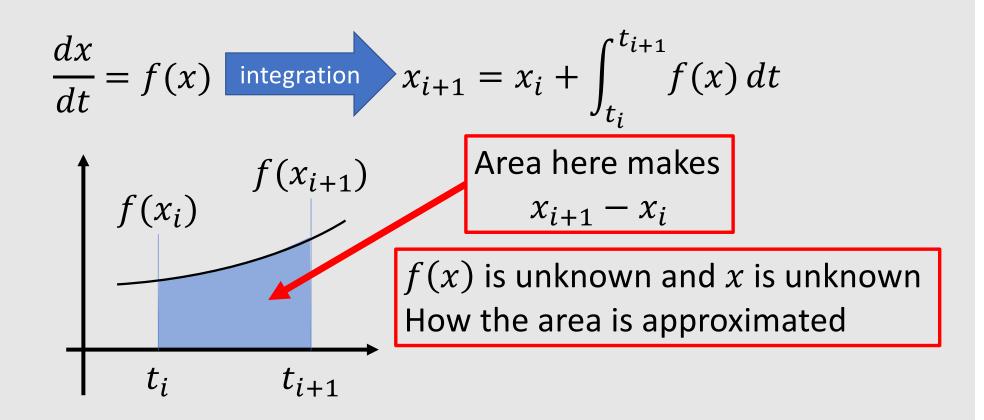
• Given  $\vec{x}_i$ , solve for  $\vec{x}_{i+1}$ 

$$\frac{dx}{dt} = f(x) \qquad \text{Integration} \qquad x_{i+1} = x_i + \int_{t_i}^{t_{i+1}} f(x) \, dt$$

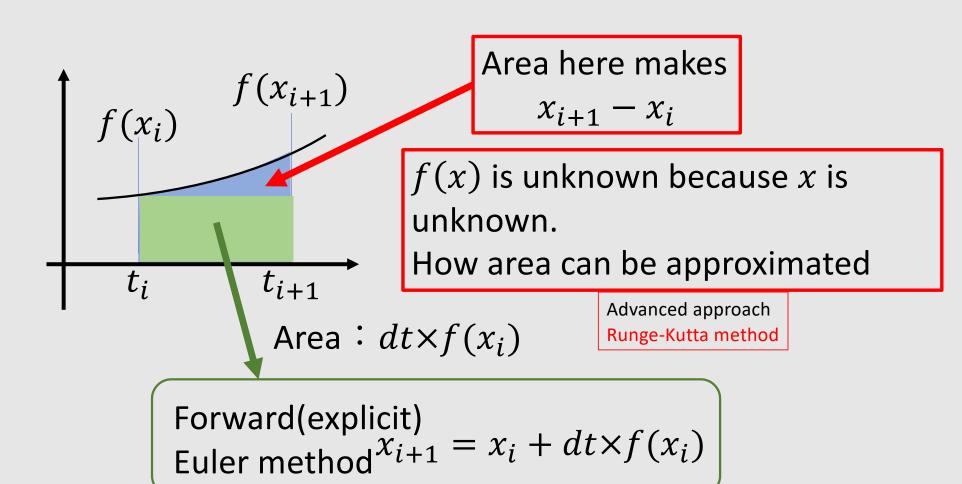
(ここに手書きで式を書く)

#### Time Integration: 1st-order Differential Eqn.

• Compute  $\vec{x}_{i+1}$  when  $\vec{x}_i$  is given



#### Time Integration: 1st-order Differential Eqn.



#### Runge-Kutta Method (4th order)

• Approximating are  $a = x_{i+1}$ -  $x_i$  with 4 different ways

