Variational Backward Euler
Time Integration



What is Variational Method?

* Solution is expressed by the optimization
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Variational Principles in Physics
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Solving Constraints v.s. Variational Problem

Solution should be Solution should be at the
on this line bottom of this hole
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Linearization
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There are many
weapons to fight




Solving Constraints v.s. Variational Problem

P\ Solution should be Solution should be at the
s on this line bottom of this hole




Making a Variational Problem

* We only need a single scalar value E to find solution
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Making a Variational Problem

* Integration with x will make a variational formula
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Variational Formulation of Backward Euler

e Review of Backward Euler
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Variational Formulation of Backward Euler

* Getting next time step by minimization

X;4+1 = argmin E;(x)
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Scheme of Variational Backward Euler
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Variational Formula Explained

* Solving tradeoff between elasticity & inertia

X)i:fi_l_dt'ﬁi

- >\T - -
S dr? (X —xi)" M(xX — x;)
\ t J
|
elasticity inertia
Trying to “undeform” shape Trying to move shape with velocity v;

g



Optimization with Newton Method

* optimize E;(X¥) = W(X) + 1/2dt? (¥ — ¥;)TM (X — ¥;) to get X;.1
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Position-based Dynamics



Position-based Dynamics (PBD) iier et al..2006]

Employed in many real-time game engine
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[Macklin et al. 14, “Unified Particle Physics for Real-Time Applications]



Variational Backward Euler and PBD

E(x) = W(x) 4 X =X"ME-X)

2dt?

Energy is based on the constraint Point mass approximation
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Variational Backward Euler and PBD

* Energy minimization by finding root of constraints: C(x) = 0
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Solving Constraints with Gauss-Seidel

1. Satisfy C; by changing x{, X
2. Satisfy C, by changing p,, p3

3. Satisfy C3 by changing ps, D4




Comparison: PBD & Newton Method
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elasticity inertia
elasticity << inertia elasticity >> inertia
 The matrix is easy  The matrix is difficult
* PBD solves optimization well (large condition number, stiff equation)

* PBD cannot optimize
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