Variational Backward Euler Time Integration

What is Variational Method?

Solution is expressed by the optimization

$$\vec{X}_{solution} = \underset{\vec{x}}{\operatorname{argmin}} E(\vec{x})$$

Variational Principles in Physics

Mechanics

(Wikipedia)

Optics

General relativity

(Wikipedia)

Quantum physics

(Wikipedia)

Solving Constraints v.s. Variational Problem

Solution should be on this line

Solution should be at the bottom of this hole

There are many weapons to fight

Solving Constraints v.s. Variational Problem

Making a Variational Problem

We only need a single scalar value E to find solution

Making a Variational Problem

• Integration with \vec{x} will make a variational formula

$$\frac{\partial W(\vec{x})}{\partial \vec{x}} = \vec{b} \qquad \text{integration} \qquad E(\vec{x}) = W(\vec{x}) - \vec{b}^T \vec{x}$$

$$\frac{\partial W(\vec{x})}{\partial \vec{x}} = -M\vec{x} - \text{Integration} \rightarrow E(\vec{x}) = W(\vec{x}) + \frac{1}{2}\vec{x}^T M\vec{x}$$

Variational Formulation of Backward Euler

Review of Backward Euler

$$\frac{ds}{dt} = \frac{s_{i+1} - s_i}{dt} = F(s_{i+1})$$

plug in
$$s_i = \begin{pmatrix} \vec{v}_i \\ \vec{x}_i \end{pmatrix}$$
, $M\dot{\vec{v}} = \frac{\partial W}{\partial \vec{x}}$

$$\begin{cases} \vec{x}_{i+1} = \vec{x}_i + dt \cdot \vec{v}_i + dt^2 \cdot M^{-1} \frac{\partial W}{\partial x_{i+1}} \\ \vec{v}_{i+1} = (\vec{x}_{i+1} - \vec{x}_i)/dt \end{cases}$$

Variational Formulation of Backward Euler

Getting next time step by minimization

Scheme of Variational Backward Euler

1. compute temporary position

$$\vec{\chi}_i = \vec{x}_i + dt \cdot \vec{v}_i$$

- 2. optimize $E_i(\vec{x})$ to get \vec{x}_{i+1}
- 3. Set velocity

$$\vec{v}_{i+1} = \frac{(\vec{x}_{i+1} - \vec{x}_i)}{dt}$$

4. Goto 1

Variational Formula Explained

Solving tradeoff between elasticity & inertia

$$E_i(\vec{x}) = W(\vec{x}) + \frac{1}{2dt^2} (\vec{x} - \vec{\chi}_i)^T M(\vec{x} - \vec{\chi}_i)$$
 elasticity inertia

Trying to "undeform" shape

Trying to move shape with velocity \vec{v}_i

Optimization with Newton Method

• optimize $E_i(\vec{x}) = W(\vec{x}) + 1/2dt^2 (\vec{x} - \vec{\chi}_i)^T M(\vec{x} - \vec{\chi}_i)$ to get \vec{x}_{i+1}

Optimization A (bad (a))

$$\vec{x}_{i+1} = \vec{x}_i - \left[\frac{\partial^2 W(\vec{x}_i)}{\partial^2 \vec{x}} \right]^{-1} \left(\frac{\partial W(\vec{x}_i)}{\partial \vec{x}} \right)$$

Optimization B (good ©)

$$\vec{x}_{i+1} = \vec{\chi}_i - \left[\frac{\partial^2 W(\vec{\chi}_i)}{\partial^2 \vec{x}} \right]^{-1} \left(\frac{\partial W(\vec{\chi}_i)}{\partial \vec{x}} \right)$$

Position-based Dynamics

Position-based Dynamics (PBD) [Müller et al.,2006]

Employed in many real-time game engine

[Macklin et al. 14, "Unified Particle Physics for Real-Time Applications]

Variational Backward Euler and PBD

$$E(\vec{x}) = W(\vec{x}) + \frac{1}{2dt^2} (\vec{x} - \vec{\chi})^T M(\vec{x} - \vec{\chi})$$

Energy is based on the constraint

Point mass approximation

$$W(\vec{x}) = \sum_{j \in constraints} C_j^2(\vec{x})$$

$$\sum_{k \in points} (\vec{x}_k - \vec{\chi}_k)^T m_k (\vec{x}_k - \vec{\chi}_k)$$

Variational Backward Euler and PBD

• Energy minimization by finding root of constraints: $C(\vec{x}) = 0$

Update while preserving momentum

$$M\Delta \vec{x} = -\alpha \nabla \{C_j^2(\vec{x})\}$$

$$\text{Chose } \alpha \text{ s.t. } C(\vec{x} + \Delta \vec{x}) = 0$$

$$\Delta \vec{x} = \frac{-C_j(\vec{x}) \nabla C_j(\vec{x})}{\nabla C_j^T(\vec{x}) M^{-1} \nabla C_j(\vec{x})}$$

Solving Constraints with Gauss-Seidel

- 1. Satisfy C_1 by changing \vec{x}_1 , \vec{x}_2
- 2. Satisfy C_2 by changing \vec{p}_2 , \vec{p}_3
- 3. Satisfy C_3 by changing \vec{p}_3 , \vec{p}_4

Comparison: PBD & Newton Method

$$E_{i}(\vec{x}) = W(\vec{x}) + \frac{1}{2dt^{2}} (\vec{x} - \vec{\chi}_{i})^{T} M(\vec{x} - \vec{\chi}_{i})$$
elasticity inertia

elasticity << inertia

- The matrix is easy
- PBD solves optimization well

elasticity >> inertia

- The matrix is difficult
 (large condition number, stiff equation)
- PBD cannot optimize

References

 Müller, Matthias, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. "Position based dynamics." Journal of Visual Communication and Image Representation 2, no. 18 (2007): 109-118.

Jan Bender, Matthias Müller and Miles Macklin, A
 Survey on Position Based Dynamics, 2017,
 In Tutorial Proceedings of Eurographics, 2017