
Collision Detection
衝突検出

1

Applications

2

Computer Graphics Robotics CAD

(Credit: freeformer @ Wikipedia)(Wikipedia)(Wikipedia)

Popular Rigid Body Simulation Engine

3

Bullet Open Dynamic Engine

(Credit: Kborer at Wikipedia)(Credit: SteveBaker at Wikipedia)

Real-time Collision Detection using GPU

4

Vivace: a Practical Gauss-Seidel Method for Stable Soft Body Dynamics
Marco Fratarcangeli, Valentina Tibaldo, Fabio Pellacini
ACM Transactions on Graphics (SIGGRAPH Asia), 2016
http://www.cse.chalmers.se/~marcof

Brute-force Collision Detection Never Works
• If there are N objects, there are N(N-1)/2 number of pair

5

𝒪(𝑁!) complexity is too slow!

𝒪(𝑁!)𝒪(𝑁)

Collision Detection in Two Stages

6

Broad Phase: extract candidate Narrow Phase: actual check

This won’t collideThere may be collision

Idea of Finding Collision (like a Garimpeiro)

7

Broad Phase Narrow Phase

Types of Bounding Volume (BV)
• Easy evaluation (convex shape!)
• Tightly fit to object’s shape
• Low memory footprint

8

Sphere OOBB
Object-Oriented Bounding Box

AABB
Axis-Aligned Bounding Box

k-DOP
discrete orientation polytope

memory tightness

1D Collision Detection
•What is the condition that two line segments intersect?

9

𝑝"#$ 𝑝"%&
𝑞"#$ 𝑞"%&

Colliding

𝑝"#$ 𝑝"%& 𝑞"#$ 𝑞"%&

𝑝"#$ 𝑝"%&𝑞"#$ 𝑞"%&

Not-Colliding

𝑝"%& < 𝑞"#$ or (𝑞"%& < 𝑝"#$)
𝑝"%& > 𝑞"#$ and (𝑞"%& > 𝑝"#$)

Logical inverse

What is “Convex” Shape
• Interpolation of two points is always included

10

Convex Non-Convex

Separation Axis Theorem (SAT)
• If two convex shapes do not collide, there exists an axis where

their projections will not overlap

11

Separation axis

Separation Axis Theorem for 2D Polygons
• One of the edges will be perpendicular to the separation axis

12

Separation axis

Collision Detection for 2D Polygons
• Check all the axes perpendicular to polygon’s edges

13

Collision of AABB and k-DOP
• Project the Bounding Volume (BV) on axes
• Two BVs collide if all projections overlap

14

AABB 3-DOP

Data Structure of AABB & k-DOP
•Minimum and maximum along the axis

15

template <int naxis>
class CKdops
{
public:

double minmax[naxis][2];
};

constexpr double axes[3][2] = {
{0,1},
{1,0},
{1,1} };

std::vector< CKdops<3> > aKdops;

Non-type template parameter
(compile time argument)

Broad-phase Collision
Detection

16

How We can Find Collisions of Circles?

17

𝑑𝑖𝑠𝑡 𝑝', 𝑝! ≤ 𝑟' + 𝑟! ⇒Collision

𝑟' 𝑟!
𝑝' 𝑝!

𝑑𝑖𝑠𝑡 𝑝', 𝑝!

Approaches
• Brute force approach
• Sweep & Prune method
• Spatial Hashing (e.g., Regular grid)
• Spatial Partitioning (e.g., KD-tree)
• Bounding Volume Hierarchy (BVH)

18

We four are awesome!

Sweep & Prune (Sort & Sweep) Method
• Simple but effective culling method

19

C

A

B

F
E

D

𝐴! 𝐴" 𝐵! 𝐵" 𝐸! 𝐸" 𝐶! 𝐶"𝐷! 𝐷"𝐹! 𝐹"

{𝐴', 𝐴(, 𝐵', 𝐵(, 𝐶', 𝐶(, 𝐷', 𝐷(, 𝐸', 𝐸(, 𝐹', 𝐹(}

sort

{𝐴', 𝐹', 𝐴(, 𝐹(, 𝐵', 𝐹(, 𝐸', 𝐷', 𝐸(, 𝐷(, 𝐶', 𝐶(}

𝑋!: put X in the stack
𝑋": remove X in the stack

How to Choose Sweeping Axis ?
• kDOPs -> Sweep in the kDOPs’ axis
• Sphere, AABB, OOBB -> XYZ-axis or PCA

20

Highest
variance

Spatial Hashing using Regular Grid
• Putting circles in a grid based on circles’ center positions
• Grid length is maximum diameter of the circle

Look only 1-ring neighborhood

21

0 1 2 3

4 5 6 7

A

B
C

D

E
Possible collisions:

{A,E}, {E,C}, {C,D}, {D,B}

No need to check for {E,D},{C,B}…etc

Spatial Hashing using Regular Grid

0 1 2 3

4 5 6 7

A

B
C

D

E

circle index A B C D E
grid index 0 7 5 2 0

• Creating look-up table from grid index to circle index

Spatial Hashing using Regular Grid

23

0 1 2 3

4 5 6 7

A

B
C

D

E

circle index A B C D E
grid index 0 7 5 2 0

• Creating look-up table from grid index to circle index

circle index A E D C B
grid index 0 0 2 5 7

A=

sort by the
grid index

Spatial Hashing using Regular Grid

24

0 1 2 3

4 5 6 7

A

B
C

D

E

circle index A B C D E
grid index 0 7 5 2 0

• Creating look-up table from grid index to circle index

circle index A E D C B
grid index 0 0 2 5 7

index of A 0 2 2 3 3 3 4 4 5

A=

B=

sort by the
grid index

B[igrid] <= j < B[igrid+1]
icircle=A[j]

jagged array

Space Partitioning with K-D Tree
1. Select axis (e.g., y-axis)
2. Split the space along median

25

A

Ordered with y-axis

Space Partitioning with K-D Tree
1. Select axis (e.g., y-axis)
2. Split the space along median
3. Repeat along other axis (e.g., x-axis)

26

A

A

Ordered with x-axis

B

Space Partitioning with K-D Tree
1. Select axis (e.g., y-axis)
2. Split the space along median
3. Repeat along other axis (e.g., x-axis)

27

A

A

B

B C

C

Bounding Volume Hierarchy (BVH)

28

• Near triangles are in the same branch
• Each node has a BV that includes two child BVs

A

B C

D E F G

A
B

C

D
E

F
G

Example of BVH Data Structure in C++

29

index 0 1 2 3 4 5 6

left-child index 1 3 4 tri index tri index tri index tri index

Right-child index 2 5 6 -1 -1 -1 -1

BV data … … … … … … …

0

1 2

3 5 4 6

template <class T>
class CNodeBVH {

unsigned int ichild_left;
unsigned int ichild_right;
T BV;

};

std::vector<CNodeBVH<CAABB>> aNodeBVH;

Evaluation of BVH using Recursion
• Ask question to the root node -> if true the node asks the

same question to two child nodes and so on

30

A

B C

D E F G

A, do you intersect with a ray?
A, do you have self-intersection?

Yes, so let me
ask my children

Top-down Approach to Build BVH
• Use PCA for separating triangles into two groups

31

Highest
variance

Highest
variance

Highest
variance

Linear BVH: Fully Parallel Construction
• Construct BVH based on Morton code (i.e., Z-order curve)
• Two cells with close Morton codes tends to be near

32

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

2) division

2)
di

vi
si

on

2D square domain with 2$ edge division

2!$ number of cells

Cell index is size of 2𝑛 in binary

Linear BVH: Fully Parallel Construction
• Convert XYZ coordinate into 1D (linear) integer coordinate

33

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0
0
0
0

0
1
1
0

1
1
0
0

1
0
0
1

1
1
1
1

12 6 15 9 0

A B C D E

Linear BVH: Fully Parallel Construction
• Sort objects by their Morton codes

34

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

1
1
0
0

12

A

0
1
1
0

6

B

1
1
1
1

15

C

1
0
0
1

9

D

0
0
0
0

0

E

sorted

From Morton Code to BVH Tree
• Divide tree when digits of sorted Morton codes are different

35

1
1
0
0

12

A

0
1
1
0

6

B

1
1
1
1

15

C

9

D

0
0
0
0

0

E Y

1
0
0
1

Z W X

W

ZY

X

Reference
• “Real-Time Collision Detection” by Christer Ericson

36

Japanese translation
available

Reference
• GPU Gems 3: Chapter 32. Broad-Phase Collision Detection

with CUDA

37

Available for free at: https://developer.nvidia.cn/gpugems/gpugems3/part-v-physics-
simulation/chapter-32-broad-phase-collision-detection-cuda

Reference on Linear-BVH
• Thinking Parallel, Part III: Tree Construction on the GPU

by Tero Karras

38

https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/

