Numerical Optimization



What is Optimization?

* Find input parameter)? where a cost function W()?) IS minimized

E
Xsolution = arginin W(X) I
X

%
Xsolution



Optimization Solve Many Problems

* What typical computer science paper looks like:
a sketch or a parameter sample, and (iii) the reconstruction error
of a parameter sample from itself in an auto-encoder fashion. Thus,
the combined loss function is defined as:

ZL(P,M,8) = w1||P = fLar(fs2L.(5))ll2 + @2|IM — fram(fs2L(5))]l2

+ @3||M = frap(fpar(P)ll2 + w4l|P = frap(fpar(P))ll2,
(1)

where {w1, w3, @3, w4} denote the relative weighting of the individ-
ual errors. We set these weights such that the average gradient of
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Solving Constraints v.s. Optimization

Solution should be
on this line
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Solution should be at the

bottom of this hole




Solving Constraints v.s. Optimization

m Solution should be Solution should be at the
!;'.. on this line bottom of this hole
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Linearization

Py

There are many

{f,% weapons to fight




Three Optimization Approaches

;:'\ -
P » Requires value W (X)

* Stochastic Optimization

* Gradient Descent

e
A
i

» Requires gradient VIV (X)

Requires gradient & hessian
v (X), V2w (X)

* Newton Method




Stochastic Optimization

¥




Find Minimum by Random Sampling 1
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1. Starting from an initial

guess )?0
2. Evaluate W()?i)
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Find Minimum by Random Sampling 2
Wi
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3. Make a candidate
X' i1 = X + Random
4. Evaluate W(X i+1)

<L




Find Minimum by Random Sampling 3
Wi

W&, | [w) |

S i 5. Move X to the candidate

X X. | 5 "
l+1 - fW(X'i41) < WX

__« ".;.. 6. Goto 3




Simulated Annealing Method

Gradually make the random update small during iteration
mm)> Make the optimization robust to local minima

Credit: Kingpinl13 @ Wikipedia



Stochastic Optimization: Blinded Golf

* Optimizer do not know the direction & strength to hit

Swing in the
random direction!




Gradient Descent Method



Gradient Descent Method

* A.k.a “steepest descent method” or “hill climbing method”

Learning rate

Let’s keep
— going down




Gradient Descent: Blinded Golf with a Guide

* Optimizer know the direction, but do not know strength to hit

F Aim that direction!
Gr =A?

OK, but how hard?

/.




Japanese Version of “Pinata”

* Breaking a watermelon with a stick on a beach

HA Move left and hit!]
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Credit: BeenAroundAWhile @ Wikipedia
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What is not Minimum

* A point is not minimum if there is a direction changing W (x)

1

N o I
© Is o
W(x) =5 This di : L | This direction
- ' direction A increase W (x)
Wl =10 decreases W(x) (opposite direction

W(x) =20 decrease)



What is not Minimum

* A point is not minimum if 3dx # 0 s.t. VIW(x) - dx # 0

dx /)

F \dW dW = VYW (x) - dx < 0

<

dx

;?
n ‘dW df = VF(x)-dx > 0



What Might be Minimum: Zero Gradient

VIW(x) =0
‘ VW(X) =0 ‘ VIW(x) # 0 ‘

LY V.4
Find the root
O ﬁ of VIW (x)

This is necessary condition (not sufficient)
| e., at least VW (x) needs to be zero
at the minimum




Finding the Root of a Scalar Function

Y V.4

f(x) /() |

To find x where f(x) = 0

I te:

Fao] o fl)

xi+1 T xl fl(x)
l

Xi+1 Xi




Finding the Root of a Multivariate Function

f(x)

(&)

To find % where f (%) = 0

lterate:

i =% -G G

Jacobian matrix

* Vf(%;) need to be invertible



Finding the Root of Gradient ViW(x) = 0

* Gradient of gradient is called hessian
f=vw
To find X where f(}?) =0 To find X where VIW (x) = 0
Iterate: Iterate:

— - rro —1 4
20 =% — [VEGED] F@ED 2 = —1vw<fi>

hessian



Gradient Descent: Golf without Blindfold

* Optimizer know the direction & strength to hit

ff & af
= | can swing with

confidence




Comparison of Three Approaches

Stochastic Optimization

© Only evaluation of a
function is necessary

® Very slow

® Not scalable
@ Heuristics

Gradient Descent

© Only gradient is
necessary
© Very scalable

® Slow
® Parameter tuning

Newton Method

© Very fast for almost
guadratic problem

® Require Hessian
® Complicated Code



Advanced Topics

* Stochastic Optimization

* Metropolis Hasting Method
* Meta-heuristic Optimization (Particle Swarm, Evolutionary Algorithm)

* Gradient Descent A
* Stochastic Gradient Descent !

* Newton Method

* Levenberg—Marquardt method
* L-BFGS method




Typical Mistakes in Optimization

* Don’t use numerical difference in gradient or Newton method

W(x + ee;) — W(x) %
(VW)= - X

Not scalable for large DoFs Inaccurate around convergence
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