Optimization with
Constraints



Why Constraints?

* Solid deformation * Fluid
* Non penetration constraints * incompressibility constraints: vortex
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Not Minimum If Its Gradient is not Zero

- . :
4 This direction
This direction A |(ncrea::e ng) |
- opposite direction decrease
decreases W(x)

W(x) = 20



Maybe Minimum if Gradient is Zero

* Find a candidate where the gradient is zero VW (x) = 0

VIW(x) =0

maybe minimum
Q //—\ find the root of gradient!
VW (x) =0
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Optimization with Constraint

* Find a point X where the function W (x) is minimized while
satisfying g(x) = 0

argmin W (x)
xc{x]g(x)=0}

argmin W (x)

g(x) = 0is an implicit
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Abstract View of the Solution Space

argmin = W (x)

J?c{ﬂg(f):O’}

argmin W (x)
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space for all the possible x
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g(x) =

space satisfying
constraint g(x) =0




Three Approaches to Handle Constraints

* Degree of Freedom (DoF) elimination ﬁ

A

all possible X & A

e Optimization in the constraint space

* Find minimum e ino i

S all possible x

* Penalty method

* Approximate constraint as energy 1 .
* Find minimum ¢ in O
¥ U

* Lagrange multiplier method

* Chose gradient parallel to the constraint’s gradient —
* Find extremum e in

satisfying
constraints
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Degree of Freedom (DoF)
Elimination



Degree of Freedom (DoF) Elimination
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* Some DoF is fixed x = {ffree» ffix}
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Newton Method for DoF Elimination &

» Update, Gradient and Hessian for Free/Fix DoF

vI/Vfree) VW = [VZ Weree free v Weree, flx]

VIV = (
VWfix vzVVflx free VzVVfix,fix

* Update only dXf, . (While dXf;,, = 0) to achieve VIWr,.qo= 0

% -1
dx = (dxfree> — [VZWfree,free O] (VWfree)
dxfix 0 I 0



DoF Elimination for General Constraint

Parameterize solution x(8) such that constraints naturally satisfy

argmin W (x) argmin W (x(60
A R
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Minimize Parameterized Solution

argmin W (x(6))
6

find the root of gradient!
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DoF Elimination Use Cases

Fixing deformation in XYZ direction
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Optimization for rotation 3
s
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Vortex method for fluid simulation g




Penalty Method (Soft Constraint)



Deviation from Constraints is g(x)
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i Let’s put a penalty on the

¥ % Jeviation from the constraint




Penalty Method: Constraint as Energy

* Adding additional energy to encourage constraint

minimize W (%) + ag?(¥) W If a is large, g (%) becomes small
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g(x)
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Linear System for Penalty Method

argmln W (f) + ag 2 (f) find the root of gradient!
X

ok ¢
Minimize W + g with Newton’s method:

dx = —[V?W + aV?g?] 1 (VW + aVg?)
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2Vg - Vg + 2V?g  2gVg



Lagrange Multiplier Method



je ne sais quoil

Lagrange Multiplier Method

* At minimum point, two gradients VW, Vg should be parallel

VW VW || Vg

© 4

A #+ 0 s.t. VIW = AVg



Why Parallel at Constrained Minimum?

* If VW, Vg are not parallel, smaller W (x) exists satisfying constraints

Vg

smaller W(x) satisfying constraints



Find Saddle Point not Minima for LM Method

* We changed minimization problem to saddle point finding problem

VIV (X) = AVg (%)

) 4

saddle point

VW (%,1) = 0 where W (x,A) = W (%) — Ag(x)

‘ s ~ Don’t minimize W (¥, ). Find

| i where the gradient is zero
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4 using the Newton method
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Lin. System for Lagrange Multiplier Method

YW@ —AVg@)\ o
( g ) =HG 2 =0

lNewtonRaphson method
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B [VZW(ic’) — AV2g(%) —Vg(a?)] (VW(f) — AVg(ic’))
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Let’s Practice Lagrange Multiplier Method

Maximize f(x,y) = x + ywhere g(x,y) = x? +y*—1=0

check it out!
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