Principal Component
Analysis (PCA)



Let’s Average Orientations !

® average



Averaging Vectors is not Straightforward

Naive orientation representations may cancel out each other
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Formulation of Add-able Orientation?

* What is the representation opposite direction is the same?
* Removing orientation information from a vector?
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Matrix of Outer Product is the Solution

 Symmetric matrix from a vector
VoVg VoV1 VoV

PRV = vv! = |V ViV V1V
UVVg VoVU1 VpVy

* The opposite vector gives the same matrix

(—)Q(—V) = VQV



Linear Form & Quadratic Form

Linear form Quadratic form
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Interpretation of Quadratic Form

* Represent how much input vector e is parallel to the vector v

é'Aé = e"(v@v)é = (é'v)(v'é) = (é'V)°
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What is Variance?

e \V/ariance means deviation from the mean
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How Should We Choose Axis?

* Finding the axis with highest variance -> PCA!




What is PCA?

* Low-dimensional approximation of hi-dimensional data
 Find directions of large variance (the magnitude of distribution)
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PCA Step 1: Averaging Points

* Adding up the multivariate value x; and divide with #samples
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PCA Step 2 : Computing Difference

* Matrix A: deviation from average

#Hcolumn: number of
variables in a sample
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Hrows: number
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PCA Step 3 : What is Covariance Matrix?

e AT A is called covariance matrix
* Covariance is positive (semi-)definite
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What is the Covariance Matrix?

* VVariance in higher dimension

e Given direction c, the variance in that direction is ¢’ Sc
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PCA Step 4 - Eigen Value Decomposition

* Find the axis with large variance by eigen decomposition

S = Avvi + Avv] -

k\\ 15t axis v4

2nd axis v,

Symmetric matrix has real eigenvalues
Its eigenvectors are orthogonal




Power Method for Maximum Eigenvalues
* [teration quickly converges into maximum eigen vector
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* Rayleigh Quotient gives maximum eigenvalue f >4 ‘
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