Einstein’s Summation Rule

o | have made a great
* Repeated indices are summed over | giscovery in mathematics!

inner product

a-bzaibi=2aibi
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Frobenius inner product

(A,B)r = A;jB;j = Z _Z_AijBij
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Let’s Practice Einstein’s Summation Rule

tr(A) =7 aibi =7
(A"B);; = Gudj =
tr(ATB) =? GGy = 2



Frobenius Inner Product (4, B)r = A;;B;;
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Tensor



What is Tensor?
e {n mathematics, a tensor is an algebraic )

object that describes a (multilinear)
relationship between sets of algebraic
objects related to a vector space.
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Two ways to Understand 2"9-order Tensor

* Transformation by a tensor is give by the inner product

Linear form Quadratic form
—> - —> -
u=A4A4-v a=u-(A-v)
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Outer Product (Tensor Product)

e Quter product makes a tensor from two vectors
—> —> -
i®b ™= (a®b)- i =d(b-u)

* Tensor product e®eé (|le]| = 1) defines projection

check it out!

~— Definition
Projection P

: P(P(x)) =P )




Outer Product (Tensor Product)

* Transformation for vectors in the outer product

check it out! (A&)@(BB):?

Definition

| AR i®b

(d®Db) - i = d(b - i)



Tensor + Basis = Matrix

* Inner product with a basis vector gives a coefficient
e This is true even if the basis is not orthonormal

Uizl})'é)i

a;j =€ - (A-é€)



Tensor & Matrix: Common Misunderstanding

<[Wrong idea! Correct your thought!
: Matrix

E—

= %

Fe <[Nice!Go ahead!

. ] Matrix
Tensor x ENE
- (— (coefficients)




Orthonormal Coordinates

e Tensor can be written with bases and coefficients

4 h

. _ 6 _ - . - check it out!
el- ej = Ojj Ul' =D el-
. =) U = V;€;
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Curvilinear Coordinates

* Non-orthogonal and un-normalized bases

* Dual bases solve the problem

/dual basis
- -7 _ ]
gi- g’ = 9;
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Curvilinear Coordinates

* Expression of a vector in curvilinear coordinates

S g3
g1
gz vl — g’l - = vlg)i
dual basis| g; - g/ = 5ij V; = g’l - —_ Ul_gi
1 g°




Curvilinear Coordinates

* Expression of a tensor in curvilinear coordinates
> ij — Ai = j — at g. 7.
g1 al =gt -(A-gHmp A=a'G; ® g,

l (A g])»A—al] ®§]

dual basis | g; -gf — 5if




Coordinate Transformation

tensor: A
a; =8 -(A-8) > o P a;;=8; (A&,
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same tensor, different
(coefficient) matrix!




Rotation of a Tensor

* Un-rotating input and rotating output

tensor: R tensor: /1 tensor: R
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U = RART»




Rotation of a Tensor

* Rotating bases while using the same coefficients

A — aijei ® ej check it out!
[

rotation of basis

}
A = aU(Rgl) ® (Ré)])
— ain((?i ® é)])RT
— R(ai]@i ® é)])RT
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Simple Elastic Potential
Energy for Continuum




Eigenvalue of Symmetric Tensor

* Eigenvalue of tensor is defined without matrix & coordinate

Linear form

AMW=A v

vector A v 2, vector v



Eigenvalues and Frobenius Norm

tr(A) = /11 + A’Z + 13

tr(Az) — /1% + /1% + /1% Frobenius norm

=A™ = ) aZ {Al}

1<i,j<3




rest shape deformed shape




deformed shape

rest shape




rest shape

F : deformation gradient tensor
F = 0%/0X
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linear form

deformed shape

dx = FdX




SVD of Deformation Gradient Tensor

F=U0xv" % = 0,
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SVD of Deformation Gradient Tensor

F=U0xv" % = 0,

-

Y isthe value we want for energy
* but SVD is costly
* How can we obtain X without SVD? 1)

\_




Gram Matrix F' F Stands for Length Change

e C = FTF: right Cauchy-Green tensor

N Quadratic form
5 Fe
e
F L . :
1 e » Fy » L
. 5 =
Right Cauchy-Green tensor

[“(e) =elFTFe




Eigenvalue: Right Cauchy Green Tensor F'F

e Right Cauchy Green tensor is symmetric FTF = Vx?VT

» Eigenvalues of FT F is squared of singular values : a2, 6%, 02
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rest config. deformation in rest config.




Eigenvalue: Green Lagrange Tensor F'F — I

FTF —1
A »&@f—%
B > (o5 — 17,
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rest config deformation in rest config




Making Energy from Eigenvalue

* Energy for isotropic material

W(F) = |IFTF = I||z = (6f — 1)?> + (05 — 1)* + (0§ — 1)?

FTF — ]
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Let’s put penalty on the absolute value of
(of —1), (o5 —1) and (o5 — 1)




How can We Formulate Elastic Energy?

Hard to choose!

Strategy A: Elastic energy W is a function of eigenvalues ~N
of Green-Lagrange strain E = FTF — | ’

W = |@— I|%, where F =

cancel rotation cancel translation A

Strategy B: Elastic energy W is a sum of square distances
after cancelling rotation and translation
S S 2
W = mipE a)iHRXi + t — le

Rt &=
l 31



Making Energy from Eigenvalue

* Energy for isotropic material

W(F) = |IFTF = I||z = (6f — 1)?> + (05 — 1)* + (0§ — 1)?

oy This energy doesn’t have costly SVD and eigen
bl decomposition easy to compute gradient & hessian!



Making Energy from Eigenvalue

W) =|IFTF = I||z = (6f — 1)*> + (05 — 1)* + (0§ — 1)?

Wait... W(F) = 0 is not always no deformation. '\ ,.\
What about mirror reflection o; = —17? i3
w
y = (xZ _ 1)2 "i
4
A

This energy is not
robust to inversion



Invertible FEM [Irving et al. 2004]

e Elastic potential energy based on singular values of F that

are g;, not on the eigen values of FTF that are o/

G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '04)



