Sensitivity-optimized Rigging for Example-based Real-time Clothing Synthesis

Weiwei Xu*
Nobuyuki Umentani*
Qianwen Chao
Jie Mao
Xiaogang Jin
Xin Tong

Motivation

Fast clothing synthesis for interactive application

[Winning Eleven 2014]

[Assassins Creed]

Key Assumption: Pose-to-Clothing Mapping

Example-based Clothing Synthesis

CPU Implementation 60FPS

CPU+GPU 200 Characters 20FPS

Related Works: Example-based Clothing

[de Aguiar et al. 2010]

[Peng et al. 2010]

[Wang et al. 2010]

[Kavan et al. 2010]

[Wang et al. 2013]

[Kim et al. 2008]

[Feng et al. 2010]

[Hahn et al. 2014]

State of the Art (quality vs. speed)

Our Approach: Rigged Clothing

We use Linear Blend Skinning for clothing

Challenges for Rigged Clothing

Clothing move differently from body forming wrinkle

Dividing Clothing Into Parts

- Global joint-clothing influence
- Locality of the clothing wrinkle

raise arm

partition

Multi-prediction approach

Clothing deformation is very nonlinear

Our Approach: Rigged Clothing

We use Linear Blend Skinning for clothing

$$x = \sum_{b} w_b \left(\mathbf{R}_b x_0 + \mathbf{T}_b \right)$$

Global influence

Near example

$$y = \sum_{b} w_{b} \left(\mathbf{R}_{b} y_{e} + \mathbf{T}_{b} \right)$$

Procedure: Rigging & Blending

Procedure: Skinning & Blending

Database: Example Poses & Clothing

Procedure: Rigging & Blending

Procedure: Skinning & Blending

Procedure: Skinning & Blending

Contributions

Examples' rigging model

Find nearest examples to

Determine example poses

Procedure: Skinning & Blending

1st order Prediction of Clothing Deformation

Sensitivity for Pose change

Skinning Weight Optimization

Linear Blend Skinning

$$y' = \sum_{b} w_{b} \left(\mathbf{R}_{b} y + \mathbf{T}_{b} \right)$$

 $\begin{array}{c|c} \text{optimize} & \stackrel{\text{rigged}}{\partial v} & \stackrel{\text{simulated}}{\partial v} \\ \text{argmin} & \stackrel{\partial v}{\partial v} & \stackrel{\partial v}{\partial v} & \stackrel{\partial v}{\partial v} \end{array}$

Sensitivity for Pose Change

Optimize weight to best approximate sensitivity

Optimized Clothing Rigging Weight

FPS:144.27

Comparison against Naïve Weight

Naïve clothing weight

Optimized clothing weight

Procedure: Skinning & Blending

Selecting & Blending with Distance Measure

K-Nearest neighbor interpolation

Distance Measure

Compare body shape or joint angles difference

Drawback of the Typical Approach

Cannot tell amount of influence of joint to cloth

Distance Measure: Our approach

Compare clothing shape difference

Sensitivity-based Distance

 Difference between sensitivity predictions, cloth shape Our distance Our distance input **Typical Typical** Pose distance distance

Comparison with Naive Approaches

unrealistic nearest example

Nearest joint for each region

(same database is used)

Our approach

Procedure: Skinning & Blending

Incremental Database Construction

- 1. Find the maximum residual pose (MCMC method)
- 2. Solve cloth deformation at the pose
- 3. Add the deformation to database
- 4. Goto 1.

More Results

Manipulating 200 characters using GPUs

Kinect "try-on"

Comparison with Physics Simulation

Limitations

- Secondary motion
- Hysteresis
- Database accuracy guarantee

Acknowledgement

- We would like to thank:
 - Anonymous Reviewer
 - CMU MoCap data
 - Ryan Schmidt and Michel Tao
- Funded by:
 - NSFC 61272392, 61322204, 61272298, 61328204
 - State Key Lab of CAD&CG, A1307
 - National High-tech R&D Program 2012AA011503

Thanks for Your Attention!

• Summary:

Fast example-based clothing synthesis using rigging approach

Database Size

Clothing	T	LS	Sh	LP
$ V_{\mathcal{Y}} $	11k	12k	10k	12k
number of triangles	22k	22k	19k	22k
runtime frame rate (FPS)	61	60	70	60
J	150	120	100	170
database size (MB)	52	44	32	45
construction time (hrs)	32	26	21	42
simulation 1 step (msec)	1140	1220	920	1280

Fast Cloth-Body Intersection Resolving

- 1. Blend deformed example
- 2. Project blended deformation for each example
- 3. Blend the deformation again

Result of Intersection Resolution

Without Resolution

